The effect of a selective arginase 2 inhibitor imidamethazoline class on the development of monocrotoline-induced pulmonary hypertension

Abstract

Introduction: The study of innovative drugs at the molecular, tissue, organ, systemic and organismic levels with an assessment of their safety are part of preclinical studies. In this case, studies aimed at specific pharmacological targets are especially important. The search for a selective arginase 2 inhibitor is necessary in terms of the treatment of pulmonary hypertension. One of the most common models of LH is the monocrotalin model of pulmonary hypertension.
Research tasks: To evaluate the protective effects of a selective arginase 2 inhibitor, including the right ventricular contractility parameters on a monocrotalin model of pulmonary hypertension in rats.
Material and Methods: A study was conducted of 5 groups of animals of 10 rats. After using a selective arginase 2 inhibitor, blood pressure, heart rate, Fulton’s index, BT index, and condition of the right ventricle were evaluated.
Results and Discussion: It was found that L207-0525 at doses of 1 and 3 mg/kg and tadalafil 10 mg/kg prevents the development of pulmonary hypertension. This is expressed in preventing an increase in systolic pressure in the right ventricle, Fulton, RV/BW and WT indices. L207-0525 showed a dose of 3 mg/kg for the activity shown.
Conclusion: The results indicate a dose-dependent protective activity of the selective arginase 2 inhibitor L207-0525 in relation to the development of monocrotaline pulmonary hypertension.

References

  • Berkowitz, D. E., White, R., D. Li, Dan E., Minhas, K. M., Cernetich, А., Kim, S., Burke, S., Shoukas, A. A., Nyhan, D., Champion, H.C., Hare, J. M. 2003. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation, 108 (16): 2000–2006. https://doi.org/10.1161/01.cir.0000092948.04444.c7
  • Chernomortseva, E.S., Pokrovskii, M.V., Pokrovskaia, T.G., Artiushkova, E.B., Gureev, V.V., 2009. Experimental study of cardioprotective and endothelioprotective action of macrolides and azalides. Experimental and Clinical Pharmacology. Eksperimental’naia i Klinicheskaia Farmakologiia, 72 (2): 29-31 [in Russian]
  • Durante, W. F., Johnson, K., Johnson, R. A., 2007. Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clinical and Experimental Pharmacology Physiology, 34 (9): 906–911. https://doi.org/10.1111/j.1440-1681.2007.04638.x
  • Durante, W., Johnson, F. K., Robert A J. 2007. Arginase: A Critical Regulator of Nitric Oxide Synthesis and Vascular Function. Clin Exp Pharmacol Physiol., 34 (9): 906-11. https://doi.org/10.1111/j.1440-1681.2007.04638.x
  • El-Bassossy, H. M., El-Fawal, R., Fahmy, A. Watson, M. L., 2013. Arginase inhibition alleviates hypertension in the metabolic syndrome. British Journal of Pharmacology, 169 (3): 693–703. https://doi.org/10.1111/bph.12144
  • El-Bassossy, H. M., El-Fawal, R., Fahmy, A., 2012. Arginase inhibition alleviates hypertension associated with diabetes: effect on endothelial dependent relaxation and NO production. Vascular Pharmacology, 57 (5-6): 194–200. https://doi.org/10.1016/j.vph.2012.01.001
  • Félétou, M., Köhler, R., Vanhoutte, P.M., 2010. Endothelium-derived vasoactive factors and hypertension: possible roles in pathogenesis and as treatment targets. Current Hypertension Reports, 12 (4): 267– 275. https://doi.org/10.1007/s11906-010-0118-2
  • Fraga-Silva, R. A., Costa-Fraga, F. P., Sturny, F. M.Y., Souza Santos, R. A., Silva, R. F., Stergiopulos, N. 2014. An increased arginase activity is associated with corpus cavernosum impairment induced by hypercholesterolemia. Journal of Sexual Medicine, 11 (5): 1173–1181. https://doi.org/10.1111/jsm.12482
  • Gumanova, N.G., Metelskaya, V.A., Artyushkova, E.B., Kochkarov, V.I., Pokrovskaya, T.G., Danilenko, L.M., Korneev, M.M., Pokrovskii, M.V., Pashin, E.N., 2007. Effect of antioxidants pQ510 and resveratrol on regulatory function of the endothelium in rats with modeled arterial hypertension. Bulletin of Experimental Biology and Medicine, 143 (6): 678-681. doi: : 10.1007/s10517-007-0212-x [in Russian]
  • Holowatz, L. A., Santhanam, L., Webb, A., Berkowitz, D. E., Kenney, W. L., 2011. Oral atorvastatin therapy restores cutaneous microvascular function by decreasing arginase activity in hypercholesterolaemic humans. Journal of Physiology, 589 (8): 2093–2103. https://doi.org/10.1113/jphysiol.2010.203935
  • Jung, C., Figulla, H. R., Lichtenauer, M., Franz, M., Pernow, J., 2014. Increased levels of circulating arginase I in overweight compared to normal weight adolescents. Pediatric Diabetes, 15 (1): 51–56. https://doi.org/10.1111/pedi.12054
  • Kaminskii, Yu G, Suslikov, A.V., Tikhonova, L.A., Galimova, M.K.h, Ermakov, G.L., Tsvetkov, V.D., Kosenko, E.A., 2011. Arginase, nitrates, and nitrites in the blood plasma and erythrocytes in hypertension and after therapy with lisinopril and simvastatin. Biology Bulletin, 5: 524–531. https://doi.org/10.1134/S1062359011050074 [in Russian]
  • Khadieva, T.A., Pokrovskaya, T.G., Belousova, Y.V., 2019. Pharmacological correction of endothelial dysfunction using ademethionin and taurine. Research Results in Pharmacology, 5 (2): 13–21. https://doi.org/10.3897/rrpharmacology.5.32730
  • Khong, S.M., Andrews, K.L., Huynh, N.N., Venardos, K., Aprico, A., Michell, D.L., Zarei, M., Moe, K.T., Dusting, G.J., Kaye, D.M., Chin-Dusting, J.P., 2012. Arginase II inhibition prevents nitrate tolerance. British Journal of Pharmacology, 166 (7): 2015–2023. https://doi.org/10.1111/j.1476-5381.2012.01876.x
  • Koklin, I.S., Danilenko, L М., 2019. Combined use of arginase II inhibitors and tadalafil for the correction of monocrotaline pulmonary hypertension. Research Results in Pharmacology, 5 (3): 79–85. https://doi.org/10.3897/rrpharmacology.5.39522
  • Korokin, M.V., Pashin, E.N., Bobrakov, K.E., Pokrovsky, M.V., Ragulina, V.A., Artyushkova, E.B., Pokrovskaya, T.G., Korokina, L.V., Tsepelev, V.Yu., Danilenko, L.M., 2009. Study of the endothelioprotective and coronary action of 3-hydroxypyridine derivatives. Kuban Scientific Medical Bulletin, 4 (109): 104-108.
  • Korokin, M.V., Pokrovskii, M.V., Kochkarov, V.I., Pokrovskaya, T G, Gureev, V.V., 2014. Endothelial and cardio protective effects of tetrahydrobiopterin, L-norvaline, L-arginine and their combinations by simulation of hyperhomo-cysteine induced endothelial dysfunction. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(6): 1375-1379.
  • Korokin, M.V., Pokrovsky, M.V., Novikov, O.O., Gureev, V.V., Denisyuk, T.A., Korokina, L.V., Polyanskaya, O.S., Ragulina, V.A., Pokrovskaya, T.G., Danilenko, L.M., Belous, A.S., 2011. Effect of L-arginine, vitamin B6 and folic acid on parameters of endothelial dysfunction and microcirculation in the placenta in modeling of L-NAME-induced NO deficiency. Bulletin of Experimental Biology and Medicine, 152 (1): 70-72. doi: 10.1007/s10517-011-1456-z
  • Korokin, M.V., Pokrovsky, M.V., Novikov, O.O., Gureev, V.V., Denisyuk, T.A., Korokina, L.V, Polyanskaya, O.S., Ragulina,V.A., Pokrovskaya, T.G., Danilenko, L.M., Belous, A.S., 2011. Effect of L-arginine, vitamin B6 and folic acid on parameters of endothelial dysfunction and microcirculation in the placenta in modeling of L-NAME-induced NO deficiency. Bulletin of Experimental Biology and Medicine, 152 (1): 70-72. doi: 10.1007/s10517-011-1456-z
  • Korokina, L.V., Zhernakova, N.I., Korokin, M.V., Pokopejko, O.N., 2018. Principles of pharmacological correction of pulmonary arterial hypertension. Research Results in Pharmacology, 4 (2): 59-76. https://doi.org/10.3897/rrpharmacology.4.27732
  • Levkova, E.A., Pazhinsky, A.L., Lugovskoy, S.S., Peresypkina, A.A., Bashuk, V.V., Pazhinsky, L.V., Martynov, M.A., Beskhmelnitsyna, E.A., 2019. Correction of retinal ischemic injuries by using non-selective imidazoline receptor agonists in the experiment. Research Results in Pharmacology, 5 (4): 7–17. https://doi.org/10.3897/rrpharmacology.5.38498
  • Pokrovskii, M.V., Pokrovskaia, T.G., Gureev V.V., Barsuk, A.A., Proskuriakova, E.V., Korokin, M.V., Gudyrev, O.S., Belous, A.S., Kochkarov, V.I., Danilenko, L.M., Levashova, O.V., Mal’tseva, N.V., Polianskaia, O.S., 2012. Correction of endothelial dysfunction by L-arginine under experimental pre-eclampsia conditions. Eksp Klin Farmakol., 75 (2): 14-6. [Article in Russian]
  • Sarycheva, M.V., Nadezhdina, N.A., Nadezhdin, S.V., Bondarev, V.P., Mycic, A.V., Burda, Y.E., Pokrovskiy, M.V., Danilenko, L.M., Peresypkina, A.A., 2019. Effect of multipotent mesenchymal stromal cells secretome on imiquimod-induced psoriasis in rats. Journal of International Pharmaceutical Research, 46. (4): 296-301. https://doi.org/10.31838/ijpr/2019.11.04.0326
  • Shin, W. S., Berkowitz, D. E., Ryoo, S. W., 2012. Increased arginase II activity contributes to endothelial dysfunction through endothelial nitric oxide synthase uncoupling in aged mice. Experimental & Molecular Medicine, 44 (10): 594– 602, https://doi.org/10.3858/emm.2012.44.10.068
  • Skachilova, S.Y., Kesarev, O.G., Danilenko, L.M., Bystrova, N.A., Dolzhikov, A.A., Nikolaev, S.B., 2016. Pharmacological correction of L-NAME-induced oxide deficiency with derivatives of 3-(2,2,2-trimethylhydrazinium) propionate. Research result: pharmacology and clinical pharmacology, 1 (2): 36-41. doi: 10.18413/2313-8971-2016-2-1-36-41 [in Russian]
  • Soldatov, V.O., Shmykova, E.A., Pershina, M.A., Ksenofontov, A.O., Zamitsky, Y.M., Kulikov, A.L., Peresypkina, A.A., Dovgan, A.P., Belousova, Y.V., 2018. Imidazoline receptors agonists: possible mechanisms of endothelioprotection. Research Results in Pharmacology, 4 (2): 11-18. https://doi.org/10.3897/rrpharmacology.4.27221
  • Spillmann, F., Van Linthout, S., Miteva K., Lorenz, M., Stangl V., Schultheiss, H.P., Tschöpe C., 2014. LXR agonism improves TNF-𝛼-induced endothelial dysfunction in the absence of its cholesterol-modulating effects. Atherosclerosis, 232 (1): 1–9. https://doi.org/10.1016/j.atherosclerosis.2013.10.001
  • Vanhoutte, P. M., Shimokawa, H. E., Tang, H. C., Feletou, M., 2009. Endothelial dysfunction and vascular disease. Acta Physiologica, 196 (2): 193–222. https://doi.org/10.1111/j.1748-1716.2009.01964.x
  • Voronkov, A.V., Pozdnyakov, D.I., 2018. Endotheliotropic activity of 4-hydroxy-3,5-di-tret-butylcinnamic acid in the conditions of experimental cerebral ischemia. Research Results in Pharmacology, 4(2): 1-10. DOI: 10.3897 / rrpharmacology.4.26519 DOI: 10.3897 / rrpharmacology.4.26519
  • Y. Joe, M. Zheng, H. J. Kim et al., 2012. Salvianolic acid B exerts vasoprotective effects through the modulation of heme oxygenase1 and arginase activities. Journal of Pharmacology and Experimental Therapeutics, vol. 341 (3): 850–858. https://doi.org/10.1124/jpet.111.190736
  • Zhang, C., Hein, T. W., W. Wang, Miller, M.W., Fossum, T. W, McDonald, M. M., Humphrey, J. D., Kuo, Lih, 2004. Upregulation of vascular arginase in hypertension decreases nitric oxide-mediated dilation of coronary arterioles. Hypertension, vol. 44 (6): 935–943. https://doi.org/10.1161/01.hyp.0000146907.82869.f2
  • Zuckerbraun, B.S., George P., Gladwin M.T., 2011. Nitrite in pulmonary arterial hypertension: therapeutic avenues in the setting of dysregulated arginine/nitric oxide synthase signalling. Cardiovascular Research, 89 (3): 542–552. https://doi.org/10.1093/cvr/cvq370

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.