Synthesis and study electrical properties of new polymer Copper Oxide NanoComposite
  • Article Type: Research Article
  • Eurasian Journal of Biosciences, 2020 - Volume 14 Issue 2, pp. 2969-2974
  • Published Online: 16 Sep 2020
  • Open Access Full Text (PDF)


Cupric oxide nanoparticles CuO NPs can be produced by sol-gel. The copper oxide nanocomposite (CuO/PAG) was prepared by added suspension solution of CuO NPs to polymer blend (PAG) which was prepared by mixing poly acetal resin with gelatin. The nanoparticles morphology is categorized through powder X-ray diffraction (XRD) along with scanning electron microscopy (SEM). Using the Scherrer formula, the average crystallite size of CuO nanoparticles can be computed. The analysis of powder XRD shows a formed monoclinic CuO phase with 15 nm average particle size. There is good agreement between the data obtained by XRD and microscopic measurements. The electrochemical characteristics for synthesized nanocomposite have been examined. The dielectric performance for a sample involving dielectric loss, AC conductivity and dielectric constant has been recorded under numerous frequency levels.


  • Aleksandrov, V. A., Ostaeva, G. Y., Papisova, A. I., Papisov, I. M., Prikhod’ko, V. M., & Fatyukhin, D. S. (2015, August). Synthesis of a copper–polymer nanocomposite on the steel surface. In Doklady Chemistry, 463(2): 204-207. Pleiades Publishing.‏
  • Aparna, Y., Rao, K. E., & Subbarao, P. S. (2012). Synthesis and characterization of CuO nano particles by novel sol-gel method. In Proceedings of the 2nd International Conference on Environment Science and Biotechnology.‏ DOI: 10.7763/IPCBEE. 2012. V48. 30
  • Borgohain, K., Singh, J. B., Rao, M. R., Shripathi, T., & Mahamuni, S. (2000). Quantum size effects in CuO nanoparticles. Physical Review B, 61(16): 11093.‏
  • Cao, Y. L., Jia, D. Z., Liu, L., & Luo, J. M. (2004). Rapid synthesis of lead oxide nanorods by one‐step solid‐state chemical reaction at room temperature. Chinese Journal of Chemistry, 22(11): 1288-1290.‏
  • Chang, M. H., Liu, H. S., & Tai, C. Y. (2011). Preparation of copper oxide nanoparticles and its application in nanofluid. Powder technology, 207(1-3): 378-386.‏
  • Cohen, S. M., Hunt, C. F., Kass, R. E., & Markhart, A. H. (1962). Polyspiroacetal resins. Part II. Structure and properties of polyspiroacetals from pentaerythritol‐glutaraldehyde and from (pentaerythritol–dipentaerythritol)‐glutaraldehyde. Journal of Applied Polymer Science, 6(23): 508-517.‏
  • Condorelli, G. G., Malandrino, G., & Fragalà, I. L. (1999). Nucleation and Growth of Copper Oxide Films in MOCVD Processes Using the β‐Ketoiminate Precursor 4, 4′‐(1, 2‐Ethanediyldinitrilo) bis (2‐pentanonate) Copper (II). Chemical Vapor Deposition, 5(5): 237-244.‏<237::AID-CVDE237>3.0.CO;2-U
  • Hsieh, C. T., Chen, J. M., Lin, H. H., & Shih, H. C. (2003). Field emission from various CuO nanostructures. Applied Physics Letters, 83(16): 3383-3385.‏
  • Katti, V. R., Debnath, A. K., Muthe, K. P., Kaur, M., Dua, A. K., Gadkari, S. C., ... & Sahni, V. C. (2003). Mechanism of drifts in H2S sensing properties of SnO2: CuO composite thin film sensors prepared by thermal evaporation. Sensors and Actuators B: Chemical, 96(1-2): 245-252.‏
  • Klug, H. P., & Alexander, L. E. (1974). X-ray diffraction procedures: for polycrystalline and amorphous materials, Wiley, united state.‏: 992.
  • Kumar, B. R., & Ravinder, D. (2002). Dielectric properties of Mn–Zn–Gd ferrites. Materials Letters, 53(6): 437-440.‏
  • Liu, L., Xiao, L., Zhu, H., & Shi, X. (2012). Preparation of magnetic and fluorescent bifunctional chitosan nanoparticles for optical determination of copper ion. Microchimica acta, 178(3-4): 413-419.‏
  • Olayiwola, M. O., Soremi, P. A. S., & Okeleye, K. A. (2015). Evaluation of some cowpea [Vigna unguiculata (L.) Walp.] genotypes for stability of performance over 4 years. Current Research in Agricultural Sciences, 2(1), 22-30.
  • Patil, A. N., Patil, M. G., Patankar, K. K., Mathe, V. L., Mahajan, R. P., & Patil, S. A. (2000). Dielectric behaviour and ac conductivity in Cu x Fe 3− x O 4 ferrite. Bulletin of Materials Science, 23(5): 447-452.‏
  • Rai, S., Bhujel, R., Biswas, J., & Swain, B. P. (2019). Effect of electrolyte on the supercapacitive behaviour of copper oxide/reduced graphene oxide nanocomposite. Ceramics International, 45(11): 14136-14145.‏
  • Ramesan, M. T. (2012). In situ synthesis, characterization and conductivity of copper sulphide/polypyrrole/polyvinyl alcohol blend nanocomposite. Polymer-Plastics Technology and Engineering, 51(12): 1223-1229.‏
  • Sagadevan, S., Zaman Chowdhury, Z., Johan, M. R. B., Aziz, F. A., Salleh, E. M., Hawa, A., & Rafique, R. F. (2018). A one-step facile route synthesis of copper oxide/reduced graphene oxide nanocomposite for supercapacitor applications. Journal of Experimental Nanoscience, 13(1): 284-296.‏
  • Vijaya Kumar, R., Elgamiel, R., Diamant, Y., Gedanken, A., & Norwig, J. (2001). Sonochemical preparation and characterization of nanocrystalline copper oxide embedded in poly (vinyl alcohol) and its effect on crystal growth of copper oxide. Langmuir, 17(5): 1406-1410.‏
  • Yang, X., Fan, S., Li, Y., Guo, Y., Li, Y., Ruan, K., ... & Gu, J. (2020). Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Composites Part A: Applied Science and Manufacturing, 128, 105670.‏
  • Zhang, K., Suh, J. M., Lee, T. H., Cha, J. H., Choi, J. W., Jang, H. W., ... & Shokouhimehr, M. (2019). Copper oxide–graphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water. Nano convergence, 6(1): 6.‏


This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.