Study the adhesion capacity on abiotic surfaces by acinetobacter baumannii isolated from drinking water
  • Article Type: Research Article
  • Eurasian Journal of Biosciences, 2020 - Volume 14 Issue 2, pp. 4217-4223
  • Published Online: 21 Oct 2020
  • Open Access Full Text (PDF)

Abstract

Acinetobacter baumannii ability to form biofilm makes it to be opportunistic pathogen causing of nosocomial infections and to be good survivor in adverse environmental conditions including medical devices and hospital environments.
Six isolates of A. baumannii were isolated from drinking water and tested to investigate biofilm formation capacity on three different type of abiotic surface, also several factors were examined such as hydrophobicity, PH and temperature.
All A. baumannii isolates displayed a positive biofilm on congored aga test CRA (pigmented colonies with black color) and Christensen’s test (adhesive layer of stained material to the inside surface of the tube).The obtained data of microbial adhesion to hydrocarbons assay (MATH) assay revealed that the percentage of all isolates ranged between (45-75%).
Results of recent study revealed that optical density OD values were consistently higher on catheter than on that of the polystyrene and glass at any of the PH and temperature Temperature 37◦C and PH 4 have greatest positive effect on biofilm formation process than other values, Current study may help in additional understanding of A. baumannii ability to form biofilm on abiotic surface which may be is used in medical devices’ manufacturer and role of this in spreading of this pathogen in hospital environment.

References

  • Adetunji VO and Isola T O (2011). Crystal violet binding assay for assessment of biofilm formation by Listeria monocytogenes and Listeria spp on wood, steel and glass surfaces. Global Veterinaria, 6(1), pp.6-10.
  • Akiyama H, Yamasaki O, Kanzaki H, Tada J, and Arata J (1998). Adherence characteristics of Staphylococcus aureus and coagulase-negative staphylococci isolated from various skin lesions. J. Dermatol. Sci., 18(2), pp.132-136.
  • Al-Ahmad A W, Al-Ahmad M, Faust J, Bächle M, Follo M, Wolkewitz M, Hannig C, Hellwig E, Carvalho C and Kohal R, (2010). Biofilm formation and composition on different implant materials in vivo. J Biomed Materi Res Part B: Appl Biomater. 2010;95B:101–9.
  • Babapour E, Haddadi A, Mirnejad R, Angaji S A and Amirmozafari N (2016). Biofilm formation in clinical isolates of nosocomial Acinetobacter baumannii and its relationship with multidrug resistance. Asian Pac. J. Trop. Biomed., 6(6), pp.528-533.
  • Bartram J ed (2015). Routledge handbook of water and health. Routledge
  • Bhargava N, Sharma P, and Capalash N, (2010). Quorum sensing in Acinetobacter: an emerging pathogen. Crit. Rev. Microbiol.36 (4), pp.349-360.
  • Bifulco J M, Shirey J J, and Bissonnette G K (1989). Detection of Acinetobacter spp. in rural drinking water supplies. Appl. Environ. Microbiol., 55(9), pp.2214-2219.
  • Christensen G D, Simpson W A, Bisno A L, and Beachey E H, (1982). Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun 37(1), pp.318-326.
  • Corpe W A (1980). Microbial surface components involved in adsorption of microorganisms onto surfaces. Adsorption of microorganisms to surfaces, New York: John Wiley & Sons;. (1980). 105-44
  • de Breij A, Gaddy J, van der Meer J, Koning R, Koster A, van den Broek P, Actis L, Nibbering P and Dijkshoorn L (2009). CsuA/BABCDE-dependent pili are not involved in the adherence of Acinetobacter baumannii ATCC19606T to human airway epithelial cells and their inflammatory response. Res. Microbiol. 160:213-218
  • De-la-Pinta I, Cobos M, Ibarretxe J, Montoya E, Eraso E, Guraya T, and Quindós G (2019). Effect of biomaterials hydrophobicity and roughness on biofilm development. J Mater. Sci. Mater. Med., 30(7), p.77.
  • Djeribi R, Bouchloukh W, Jouenne T, and Menaa B, (2012). Characterization of bacterial biofilms formed on urinary catheters. Am. J. Infect. Control, 40(9), pp.854-859.
  • Donlan R M (2002). Biofilms: microbial life on surfaces. Emerg. Infect. Dis.8(9): (2002). 881-890.
  • Eliwi S, Musleh R M, Sabah M A and Ibraheem S (2013). Study on Aeromonas spp. Isolated from raw and drinking water in Baghdad city. Iraqi J Sci., 54(5), pp.1068-1077.
  • Fournier P E, Richet H, and Weinstein R A (2006). The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin. Infect. Dis., 42(5), pp.692-699.
  • Freeman D J, Falkiner F R and Keane C T (1989). New method for detecting slime production by coagulase negative staphylococci. J. Clin. Pathol., 42(8), pp.872-874.
  • Garrett T R, Bhakoo M, and Zhang Z, (2008). Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 1049-1056.
  • Govaert M, Smet C, Baka M, Ećimović B, Walsh J L, and Van Impe J (2018). Resistance of L. monocytogenes and S. Typhimurium towards cold atmospheric plasma as function of biofilm age. Appl. Sci., 8(12), p.2702.
  • Gyo M, Nikaido T, Okada K, Yamauchi J, Tagami J, and Matin K (2008). Surface response of fluorine polymer-incorporated resin composites to cariogenic biofilm adherence. Appl Environ Microbiol. 74:1428–35.
  • Herald P J, and Zottola E A (1988). Attachment of Listeria monocytogenes to stainless steel surfaces at various temperatures and pH values. J. Food Sci., 53(5), 1549-1562.
  • Houdt R V, and Michiels C (2010). Review Article: Biofilm formation and the food industry, J. Appl. Microbiol., 109, pp.1117-1131.
  • Jindal S, Anand S, Huang K, Goddard J, Metzger L and Amamcharla J (2016). Evaluation of modified stainless steel surfaces targeted to reduce biofilm formation by common milk sporeformers. J Dairy Sci. ;99:9502–13.
  • Jones E M, Cochrane C A and Percival S L (2015). The effect of pH on the extracellular matrix and biofilms. Adv. wound care, 4(7).431-439.
  • Koseki H, Yonekura A, Shida T, Yoda I, Horiuchi H, Morinaga Y, Yanagihara K, Sakoda H, Osaki M, and Tomita M (2014). Early staphylococcal biofilm formation on solid orthopaedic implant materials: in vitro study. PloS one, 9(10),.e107588
  • Krolasik J, Zakowska Z, Krepska M and Klimek L (2010). Resistance of bacterial biofilms formed on stainless steel surface to disinfecting agent. Pol J Microbiol, 59(4), pp.281-287.
  • La Fauci V, Costa G B, Genovese C, Palamara MAR, Alessi V, and Squeri R (2019). Drug-resistant bacteria on hands of healthcare workers and in the patient area: an environmental survey in Southern Italy’s hospital. Revista Española de Quimioterapia, 32(4), p.303.
  • Lather P, Mohanty A K, Jha P and Garsa A K (2016). Contribution of cell surface hydrophobicity in the resistance of Staphylococcus aureus against antimicrobial agents. Biochem. Rese. Intern. pp1-5.
  • Leclerc H, and Moreau A (2002). Microbiological safety of natural mineral water. FEMS Microbiol Rev 26:207–222
  • Liu Y, Tang H, Lin Z and Xu P (2015). Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol. Adv., 33(7), pp.1484-1492.
  • Mafu A A, Plumety C, Deschênes L, and Goulet J (2011). Adhesion of pathogenic bacteria to food contact surfaces: influence of pH of culture. Inter. Jour. of Microbiol. Article ID 972494, 10.
  • Martí S, Rodríguez-Baño J, Catel-Ferreira M, Jouenne T, Vila J, Seifert H and Dé E (2011). Biofilm formation at the solid-liquid and air-liquid interfaces by Acinetobacter species. BMC research notes, 4(1), pp.1-4.
  • M’hamedi I, Hassaine H, Bellifa S, Lachachi M, Terki I K, and Djeribi R (2014). Biofilm formation by Acinetobacter baumannii isolated from medical devices at the intensive care unit of the University Hospital of Tlemcen (Algeria). Afr. J. Microbiol. Res., 8(3), pp.270-276.
  • Moldoveanu A M (2012). Environmental factors influences on bacterial biofilms formation. Ann. Romanian Soc. Cell Biol. 17(1)):118-126.
  • Morgan D J, Liang S Y, Smith C L, Johnson J K, Harris A D,Furuno J P, Thom K A, Snyder G M, Day H R, and Perencevich, E.N., 2010. Frequent multidrug-resistant Acinetobacter baumannii contamination of gloves, gowns, and hands of healthcare workers. Infect Control Hosp Epidemiol: the official journal of the Society of Hospital Epidemiologists of America, 31(7), p.716.
  • Musleh R M, and Jebur A Q (2014). Crystal Violet Binding Assay for Assessment of Biofilm Formation by Klebsiella pneumoniae on Catheter, Glass and Stainless-steel Surfaces. Iraqi J Sci., 55(3B), pp.1208-1212.
  • Narciso-da-Rocha C, Vaz-Moreira I, Svensson-StadlerL, Moore E R, and Manaia C M, (2013). Diversity and antibiotic resistance of Acinetobacter spp. in water from the source to the tap. Appl. Microbiol. Biotechnol., 97(1), pp.329-340.
  • Nisbet B A, Sutherland I W, Bradshaw I J, Kerr M, Morris E, and Shepperson W A (1984). XM-6: a new gel-forming bacterial polysaccharide. Carbohydr. Polym., 4(5), pp.377-394.
  • Nostro A, Cellini L, Di Giulio M, D’Arrigo M, Marino A, Blanco A R, Favaloro A, Cutroneo G, and Bisignano G (2012). Effect of alkaline pH on staphylococcal biofilm formation. Apmis, 120(9), pp.733-742
  • Pakharukova N, Tuittila M, Paavilainen S, Malmi H, Parilova O, Teneberg S, Knight S D and Zavialov A V (2018). Structural basis for Acinetobacter baumannii biofilm formation. Proc. Natl Acad. Sci 115(21), pp.5558-5563.
  • Pier‐Francesco A, Adams R J, Waters MG, and Williams D W (2006). Titanium surface modification and its effect on the adherence of Porphyromonas gingivalis: an in vitro study. Clin. oral implants res., 17(6), pp.633-637.
  • Pour NK, Dusane D H, Dhakephalkar P K, Zamin F R, Zinjarde S S and Chopade B A (2011). Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters. FEMS Immunol. Med. Mic., 62(3), pp.328-338
  • Pui C F, Wong W C, Chai L C, Lee H Y, Tang JY, Noorlis A, Farinazleen M G, Cheah Y K, and Son R (2011). Biofilm formation by Salmonella Typhi and Salmonella Typhimurium on plastic cutting board and its transfer to dragon fruit. Inter.Food Research Jour., 18(1)
  • Qin H, Zhao Y, Cheng M, Wang Q, Wang Q, Wang J, Jiang Y, An Z, and Zhang X (2015). Anti-biofilm properties of magnesium metal via alkaline pH. RSC advances, 5(28), pp.21434-21444.
  • Rampadarath S, Bandhoa K, Puchooa D, Jeewon R, and Bal S (2017). Early bacterial biofilm colonizers in the coastal waters of Mauritius. Electron. J. Biotechnol, 29.13-21.
  • Rosenberg M, Gutnick D, and Rosenberg E (1980). Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS microbiology letters, 9(1), pp.29-33.
  • Rosenberg M, and Kjelleberg S (1986). Hydrophobic interactions: role in bacterial adhesion. Advances Microb. Ecol.9: (1986). 353-93.
  • Samie A, Mashao M B, Bessong P O, NKgau T E, Momba M NB. and Obi C L (2012). Diversity and antibiograms of bacterial organisms isolated from samples of household drinking-water consumed by HIV-positive individuals in rural settings, South Africa. J Health. Popul. Nutr, 30(3), p.241
  • Simoes L C, Simoes M and Vieira M J (2010) Influence of the diversity of bacterial isolates from drinking water on resistance of biofilms to disinfection. Appl Environ Microbiol, 76(19), pp.6673-6679
  • Standing Committee of Analysts.The Microbiology of Water and Associated Materials (2017) Practices and Procedures for Laboratories Methods for the Examination of Waters and Associated Materia
  • Taitt C R, Leski T A, Stockelman M G, Craft D W, Zurawski D V, Kirkup B C and Vora G J (2014). Antimicrobial resistance determinants in Acinetobacter baumannii isolates taken from military treatment facilities. Antimicrob. Agents Chemother., 58(2), pp.767-781.
  • Tang P L, Pui C F, Wong W C, Noorlis A and Son R (2012). Biofilm forming ability and time course study of growth of Salmonella Typhi on fresh produce surfaces. Inte. Food Res. J. 19(1): 71-76.
  • Townsley L, and Yildiz F H (2015). Temperature affects c‐di‐GMP signalling and biofilm formation in Vibrio cholerae. Environ. Microbiol., 17(11), pp.4290-4305.
  • Umezawa K, Asai S, Ohshima T, Iwashita H, Ohashi M, Sasaki M, Kaneko A, Inokuchi S, and Miyachi H (2015). Outbreak of drug-resistant Acinetobacter baumannii ST219 caused by oral care using tap water from contaminated hand hygiene sinks as a reservoir. Am. J. Infect. Control 43(11), pp.1249-1251.
  • Vásquez-Ponce F, Higuera-Llantén S, Pavlov M S, Ramírez-Orellana R, Marshall S H, and Olivares-Pacheco J (2017). Alginate overproduction and biofilm formation by psychrotolerant Pseudomonas mandelii depend on temperature in Antarctic marine sediments. Electron. J. Biotechnol., 28, pp.27-34.
  • Wassmann T, Kreis S, Behr M and Buergers R (2017). The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants. Int. J Implant Dent, 3(1), pp.1-11.
  • World Health Organisation. (2008) Guidelines for drinking water. World Health Organization, Geneva
  • World Health Organisation (2017) Guidelines for drinking water. World Health Organization, Geneva
  • Zaugg L K, Astasov‐Frauenhoffer M, Braissant O, Hauser‐Gerspach I, Waltimo T, and Zitzmann N U, (2017). Determinants of biofilm formation and cleanability of titanium surfaces. Clin Oral Implants Res. 2016;27:918–25
  • Zhang H Z, Zhang J S, and Qiao L (2013). The Acinetobacter baumannii group: a systemic review. World J. Emerg. Med., 4(3), p.169.
  • Zhao B, Van Der Mei H C, Subbiahdoss G, de Vries J, Rustema-Abbing M, Kuijer R, Busscher H J,and Ren Y (2014). Soft tissue integration versus early biofilm formation on different dental implant materials. Dental Mater.;30:716–27.30(7), pp.716-727.

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.