RAPIDEC®CARBA NP-, CHROMID®CARBA agar- and MHT-based investigation of Carbapenem Resistance-Gram Negative (CRGN) bacteria isolated from wastewater in Basra city

Abstract

Background: Carbapenem are a wide range of β-lactam antibiotics exploited as a final resort in the controlling of multidrug-resistant bacterial infections. Carbapenemase producing Gram negative bacteria may reach the wastewater via effluent of untreated hospital wastewater in addition to vital role of drug manufacturing companies that loaded their wastewater with such antibiotics leading to emergence of carbapenem resistance bacteria. The current study aims to investigate the carbapenemase producing Gram negative bacteria among wastewater using three different phenotypic methods. Methodology: During a winter period of 2018, 852 wastewater samples were collected from Basra city and cultured on MacConky agar and then confirm identification by API-20E. The Kirby-Bauer were used for screenings of carbapenem resistance and then the carbapenemase producing confirmed by three different phenotypic methods: MHT, RAPIDEC®.CARBA NP and CHROMID®.CARBA agar. Results: The results of bacterial isolation revealed positive culture for 742 (87.08%) of samples while 110 (12.92%) give no growth. Gram negative bacteria were recovered from 514/852 (60.32%) of samples and 228/852(26.76%) for Gram-positive bacteria. All 514 gram negative isolates were submitted for carbapenem producing using disc diffusion method for imipenem, meropenem and ertapenem. The results showed that only 38/514 (7.39%) of Gram negative isolates were resist at least one of the three used carbapenem antibiotics. 10/38 (26.31%) of Gram negative isolates were resist to meropenem, imipenem and ertapenem. 21/38 (55.26%) were resist to meropenem and imipenem while all isolates 38/38 (100%) were resist to meropenem. The 38 isolates of carbapenem producing Gram negative (CRGN) were 20/38 (52.631%) for E. coli, 11/38 (28.947%) for K. pneumoniae, 5/38 (13.157%) for P. aeruginosa and 2/38 (5.263%) for P. mirabilis. The results of three phenotypic assay to investigate the carbapenemase production showed that RAPIDEC®CARBA NP reveal 36/38 (94.74%), MHT reveal 31/38 (81.58%) and CHROMID®CARBA agar reveal 27/38 (71.05%) of isolates were carbapenemase producer. Conclusion: It is easily to conclude that, the carbapenemase producing Gram negative (CPGN) bacteria may reach the wastewater from hospital effluent and drug manufacturers. RAPIDEC®CARBA NP was rapid, accurate and suitable assay for detecting CPGN bacteria.

References

  • Ash, R. J., Mauck, B., & Morgan, M. (2002). Antibiotic resistance of gram-negative bacteria in rivers, United States. Emerging infectious diseases, 8(7), 713.‏
  • Baquero, F., & Martinez, J. L. Canton. R.(2008). Antibiotics and antibiotic resistance in water Environments. Current Opinion Biotechnology, 18, 123-134.‏
  • Blaak, H., van Hoek, A. H., Veenman, C., van Leeuwen, A. E. D., Lynch, G., van Overbeek, W. M., & de Roda Husman, A. M. (2014). Extended spectrum ß-lactamase-and constitutively AmpC-producing Enterobacteriaceae on fresh produce and in the agricultural environment. International journal of food microbiology, 168, 8-16.‏
  • Carvalhaes, C. G., Picao, R. C., Nicoletti, A. G., Xavier, D. E., & Gales, A. C. (2010). Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results. Journal of antimicrobial chemotherapy, 65(2), 249-251.‏
  • Clinical and Laboratory Standards Institute. (2018). Performance standards for antimicrobial susceptibility testing. CLSI supplement M100.‏
  • Diene, S. M., & Rolain, J. M. (2014). Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clinical Microbiology and Infection, 20(9), 831-838.‏
  • Dortet, L., Agathine, A., Naas, T., Cuzon, G., Poirel, L., & Nordmann, P. (2015). Evaluation of the RAPIDEC® CARBA NP, the Rapid CARB Screen® and the Carba NP test for biochemical detection of carbapenemase-producing Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 70(11), 3014-3022.‏
  • Dortet, L., Poirel, L., Errera, C., & Nordmann, P. (2014). CarbAcineto NP test for rapid detection of carbapenemase-producing Acinetobacter spp. Journal of clinical microbiology, 52(7), 2359-2364.‏
  • Franz E, Veenman C, Van Hoek AH, de Roda Husman A, Blaak H.(2015). Pathogenic Escherichia coli producing Extended-Spectrum β-Lactamases isolated from surface water and wastewater. Scientific reports. Sep 24;5(1):1-9.
  • Galler, H., Feierl, G., Petternel, C., Reinthaler, F. F., Haas, D., Grisold, A. J., ... & Zarfel, G. (2014). KPC-2 and OXA-48 carbapenemase-harbouring Enterobacteriaceae detected in an Austrian wastewater treatment plant. Clinical Microbiology and Infection, 20(2), O132-O134.‏
  • Girlich, D., Poirel, L., & Nordmann, P. (2008). Journal of Antimicrobial Chemotherapy Advance Access published July 28, 2008.‏
  • Hatosy, S. M., & Martiny, A. C. (2015). The ocean as a global reservoir of antibiotic resistance genes. Applied and environmental microbiology, 81(21), 7593-7599.‏
  • Jang, J., Hur, H. G., Sadowsky, M. J., Byappanahalli, M. N., Yan, T., & Ishii, S. (2017). Environmental Escherichia coli: ecology and public health implications—a review. Journal of applied microbiology, 123(3), 570-581.‏
  • Lübbert, C., Baars, C., Dayakar, A., Lippmann, N., Rodloff, A. C., Kinzig, M., & Sörgel, F. (2017). Environmental pollution with antimicrobial agents from bulk drug manufacturing industries in Hyderabad, South India, is associated with dissemination of extended-spectrum beta-lactamase and carbapenemase-producing pathogens. Infection, 45(4), 479-491.‏
  • Manaia, C. M., Rocha, J., Scaccia, N., Marano, R., Radu, E., Biancullo, F., ... & Kampouris, I. (2018). Antibiotic resistance in wastewater treatment plants: tackling the black box. Environment international, 115, 312-324.‏
  • Marti, E., Jofre, J., & Balcazar, J. L. (2013). Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant. PloS one, 8(10), e78906.‏
  • Meletis, G. (2016). Carbapenem resistance: overview of the problem and future perspectives. Therapeutic advances in infectious disease, 3(1), 15-21.‏
  • Moore, D. F., Guzman, J. A., & McGee, C. (2008). Species distribution and antimicrobial resistance of enterococci isolated from surface and ocean water. Journal of applied microbiology, 105(4), 1017-1025.‏
  • Mounas, M. S. A., Al-Ramdhan, W. A., Jawad, R. N., & Zubairy, E. B. (2019). Pathogenic Microorganism’s Detection in tap Water in Basra city treated within Ultraviolet radiation. Indian Journal of Public Health Research & Development, 10(2), 890-893.‏
  • Oyediran, W. O., Omoare, A. M., Alaka, F. A., Shobowale, A. A., & Oladoyinbo, O. B. (2018). Rural Farmers’ Coping Strategies to Effects of Climate Change on Watermelon Production in Igboora, Oyo State, Nigeria. International Journal of Sustainable Agricultural Research, 5(2), 19-26.
  • Pang, Y. C., Xi, J. Y., Li, G. Q., Shi, X. J., & Hu, H. Y. (2015). Prevalence of antibiotic-resistant bacteria in a lake for the storage of reclaimed water before and after usage as cooling water. Environmental Science: Processes & Impacts, 17(6), 1182-1189.‏
  • Papadimitriou-Olivgeris, M., Bartzavali, C., Christofidou, M., Bereksi, N., Hey, J., Zambardi, G., & Spiliopoulou, I. (2014). Performance of chromID® CARBA medium for carbapenemases-producing Enterobacteriaceae detection during rectal screening. European journal of clinical microbiology & infectious diseases, 33(1), 35-40.‏
  • Pires, J., Novais, A., & Peixe, L. (2013). Blue-carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures. Journal of clinical microbiology, 51(12), 4281-4283.‏
  • Reinthaler, F. F., Galler, H., Feierl, G., Haas, D., Leitner, E., Mascher, F., ... & Himmel, W. (2013). Resistance patterns of Escherichia coli isolated from sewage sludge in comparison with those isolated from human patients in 2000 and 2009. Journal of water and health, 11(1), 13-20.‏
  • Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., ... & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Science of the total environment, 447, 345-360.‏
  • Rodriguez-Mozaz, S., Chamorro, S., Marti, E., Huerta, B., Gros, M., Sànchez-Melsió, A., ... & Balcázar, J. L. (2015). Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water research, 69, 234-242.‏
  • Rosas, I., Salinas, E., Martínez, L., Cruz-Córdova, A., González-Pedrajo, B., Espinosa, N., & Amábile-Cuevas, C. F. (2015). Characterization of Escherichia coli isolates from an urban lake receiving water from a wastewater treatment plant in Mexico city: fecal pollution and antibiotic resistance. Current Microbiology, 71(4), 490-495.‏
  • Shrivastava, S. R., Shrivastava, P. S., & Ramasamy, J. (2018). World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Journal of Medical Society, 32(1), 76.‏
  • Tenover, F. C. (2006). Mechanisms of antimicrobial resistance in bacteria. The American journal of medicine, 119(6), S3-S10.‏
  • Vrioni, G., Daniil, I., Voulgari, E., Ranellou, K., Koumaki, V., Ghirardi, S., ... & Tsakris, A. (2012). Comparative evaluation of a prototype chromogenic medium (ChromID CARBA) for detecting carbapenemase-producing Enterobacteriaceae in surveillance rectal swabs. Journal of clinical microbiology, 50(6), 1841-1846.‏
  • White, L., Hopkins, K. L., Meunier, D., Perry, C. L., Pike, R., Wilkinson, P., ... & Woodford, N. (2016). Carbapenemase-producing Enterobacteriaceae in hospital wastewater: a reservoir that may be unrelated to clinical isolates. Journal of Hospital Infection, 93(2), 145-151.‏
  • Wikler, M. A. (2006). Performance standards for antimicrobial susceptibility testing Sixteenth informational supplement. M 100-S 16.‏
  • Yang, F., Mao, D., Zhou, H., & Luo, Y. (2016). Prevalence and fate of carbapenemase genes in a wastewater treatment plant in northern China. PLoS One, 11(5), e0156383.‏
  • Zarakolu, P., Day, K. M., Sidjabat, H. E., Kamolvit, W., Lanyon, C. V., Cummings, S. P., ... & Perry, J. D. (2015). Evaluation of a new chromogenic medium, chromID OXA-48, for recovery of carbapenemase-producing Enterobacteriaceae from patients at a university hospital in Turkey. European Journal of Clinical Microbiology & Infectious Diseases, 34(3), 519-525.‏
  • Zhang, Y., Marrs, C. F., Simon, C., & Xi, C. (2009). Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp. Science of the Total Environment, 407(12), 3702-3706.‏
  • Zurfluh, K., Hächler, H., Nüesch-Inderbinen, M., & Stephan, R. (2013). Characteristics of extended-spectrum β-lactamase-and carbapenemase-producing Enterobacteriaceae isolates from rivers and lakes in Switzerland. Applied and environmental microbiology, 79(9), 3021-3026.‏

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.