Molecular detection of β-lactamase production among klebsiella pneumoniae isolated from different clinical cases
  • Article Type: Research Article
  • Eurasian Journal of Biosciences, 2020 - Volume 14 Issue 1, pp. 35-41
  • Published Online: 28 Feb 2020
  • Open Access Full Text (PDF)


Many bacteria around the world produce the extended-spectrum β-lactamase (ESBL), especially Klebsiella pneumoniae, which are resistant to many beta lactam antibiotics by coding genes of enzymes that in turn give K.pnemoniae antibiotic resistance, as well as a role in the development of infection. The isolates of K.pneumoniae were identified based on phenotypic and laboratory methods, as well as screening of β-lactamase by phenotypic confirmatory test (PCT) where most isolates were positive at a rate (62.06%). K.penumoniae isolates resistance was also tested from a total of (110) isolates from various clinical sources: urine (72) and K.pneumonia isolates were diagnosed about 16 (22.22%, 16/72) , sputum (25) were diagnosed about 8 (32%, 8/25) and burns (13) about 5 (38.46%, 5/13) different resistance to 10 beta-lactam antibiotics including piperacilin (100%), ticarcillin (82.75%), aztreonam (79.31%), ceftazidime (58.62%), ceftriaxone (48.27%), augmentin (41.37%), ceftaxime, meropenem (37.93%), cefepime and imipenem (34.48%). In this study molecular diagnostics for 16S RNA gene screening, as well as four genes for beta-lactamase were investigated. The results showed that high genes of these enzymes were βlaTEM, βlaSHV (80%) and βlaCTX-M, βlaAmpC (100%). It results in a positive relationship between the existence of genes and the of antibiotic resistance in isolates.


  • Abebe B, Murthy HCA, Amare Zereffa E, Dessie Y. (2020) Latent Fingerprint Enhancement Techniques: A Review. Journal of Chemical Reviews 2(1): 40-56.
  • Al Janaby AAJ, Alhasani AHA (2016) Virulence factors and antibiotics susceptibility patterns of multidrug resistance Klebsiella penumoniae isolated from different clinical infections. Afr. J. Microbiol. Res. June 10(22): 829-843.
  • Al-Agamy MHM, Shibl AM, tawfik AF (2009) Prevalence and molecular characterization of extended spectrum β-lactamase -producing Klebsiella pneumonia in Riyadh , Saudi Arabia . Ann. Saudi Med. May 29(4): 253- 257.
  • Amiri A, Firoozeh F, Moniri R. Zibael M (2016) prevalence of CTX-M. type and PER extended-spectrum β-lactamases among klebsiella isolated from clinical specimens in the teaching hospital of kashan , Iran . J. Red crescent Med. February 18(2): e22260.
  • Asif M, Mohd I (2019) Prospects of Medicinal Plants Derived Nutraceuticals: A Re-emerging New Era of Medicine and Health Aid. Progress in Chemical and Biochemical Research 150-169.
  • Branger C, Lesimple AL, Bruneau B, Berry P, Lambert-Zechovsky N (1998) Long-term investigation of the clonal dissemination of Klebsiella pneumoniae isolates producing extended-spectrum β-lactamases in a university hospital. J. Med. Microbiol 47: 201-209.
  • Clinical and Laboratory Standards Institute. Performance Standards for antimicrobial susceptibility testing (2012). 21th information supplement. Document M100-S22. PA; CLSI: Wayne.
  • Dehshiri M, Khorahrooz SS, Zoladi M, et al. (2018) The frequency of Klebsilla pneumoniae encoding genes for CTX-M, TEM-1 and SHV-1 extended-spectrum β-lactamases enzymes isolated from urinary tract infection. Iran. Annclin. Microbial. Antimicrob 17(4): 1-12.
  • Edelstein M, Pimkin M, Palagin I, Edelstein I, Stratchounski L. (2003) Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob. Agents Chemother 47(12): 3724–3732.
  • Eftekhar F, Rastegar M, Golalipoor M, Mansoursamaei N (2012) Detection ofextended spectrum β-lactamases in urinary isolates of Klebsiella pneumonia in relation to blaSHV, blaTEM and blaCTX-M gene carriage. Iran J. Public Health 41(3): 127.
  • Ejaz H, Zafa A, Mahmood S, Javed MM (2013) Urinary tract infections caused by extended spectrum β-lactamase (ESBL) producing Escherichia coli and Klebsiella pneumoniae. Afr J biotech. Res 10(73): 16661-6.
  • Emery CL, Weymouth LA (1997) Detection and clinical significance of extended-spectrum β-lactamases in a tertiary-care medical center. J. Clin Microbiol 35(8): 2061-7.
  • Essack SY, Hall LMC, Livermore DM (2004). Klebsiella pneumoniae isolate from South Africa with multiple TEM, SHV and AmpC β-lactamases. Int. J. Antimicrob. Agents 23: 398-400.
  • Feizabadi MM, Delfani S, Raji N, Majnooni A, Aligholi M, Shahcheraghi F, et al. (2010) Distribution of bla TEM, bla SHV, bla CTX-M genes among clinical isolates of Klebsiella pneumoniae at Labbafinejad Hospital, Tehran, Iran. Microb Drug Resist 16(1): 49–53.
  • Feizabadi MM, Etemadi G, Yadegarinia D, Rahmati M, Shabanpoor S, Bokaei S (2006) Antibiotic-resistance patterns and frequency of extended-spectrum β-lactamase-producing isolates of Klebsiella pneumoniae in Tehran. Med. Sci. Monit 12: BR362-5.
  • Friedrich AW, Koch R, Bielasz ewska M, Zhang W, Karch H, Mathys W (2005) Distribution of the Urease gene cluster among urea activity of enterohemorrhagic Escherichia coli OH157 isolated from humans. J. of Clin. Micr 43(2): 546-550.
  • Haeggman S (2010) Evolution of beta-lactam resistance in Klebsiella pneumoniae stockh from the Swedish institute for infections disease control.
  • Ishii Y, Alba J, Kimura S, Shiroto K, Yamaguchi K (2005) Evaluation of antimicrobial activity of β-lactam antibiotics using E test against clinical isolates from 60 medical centers in Japan. Int. J. Antimicrob. Agents 25(4): 296–301.
  • Jeong SH, Bae IK, Lee JH, Sohn SG ,Kang GH, Jeon GJ, et al. (2004) Molecular characterization of extendedspectrum beta-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J Clin Microbiol 42: 2902-2906.
  • Kim YK, Pai H, Lee HJ, Park SE, Choi EH, Kim J, Kim JH, Kim EC (2002) Bloodstream infections by extended spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae in children: epidemiology and clinical outcome. Antimicrob. Agents Chemother 46: 1481–1491.
  • Kiratisin P, Apisarnthanarak A, Laesripa C, Saifon P (2008) Molecular characterization and epidemiology of extended-spectrum-beta-lactamase producing Escherichia coli and Klebsiella pneumoni¬ae isolates causing health care-associated infection in Thailand, where the CTX-M family is endemic. Antimicrob. Agents Chemother 52(8): 2818–24.
  • Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO. (2001). Extended spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumonia: risk factors for infection and impact of resistance on outcomes. Clin. Infect. Dis 32: 1162–1171.
  • Leila N, Fereshteh S, Nikbin VS, Shoeib NPER, (2010) CTX-M, TEM and SHV β-lactamases in clinical isolates of Klebsiella pneumoniae isolated from Tehran, Iran. J. Basic Med. Sci 13(3): 111-8.
  • Mendes C, Kiffer C, Segura A, Ribeiro J, Turner P. (2004). Klebsiella pneumoniae with multiple antimicrobial resistances. Braz. J. Infect. Dis 8: 109-111.
  • Mendonca N, Ferreira E (2009) Genetic diversity of genes encoding OKP and LEN β-lactamases produced by clinical Klebsiella pneumoniae strains in Portugal. Diagn. Microbial. Infect. Dis 63: 334-38.
  • Molana Z, Ferdosi SE, Gharavi S, Shafii M, Norkhomami S, Ahangarkani F, et al. (2011) Molecular investigation of class I integron in Klebsiella pneumonia isolated from intensive care unit. JBUMS 13(6): 7-13.
  • Monnet DL, Archibald LK, Phillips L, Tenover FC, McGowan JE JR, Gaynes RP (1998) Antimicrobial use and resistance in eight US hospitals: complexities of analysis and modeling. Intensive Care Antimicrobial Resistance Epidemiology Project and National Nosocomial Infections Surveillance System Hospitals. Infect. Control Hosp. Epidemiol 19: 388-394.
  • Nasehi L, Shahcheraghi F, Nikbin VS, Nematzadeh S (2010) PER, CTX-M, TEM and SHV β-lactamases in clinical isolates of klebsiella pneumoniae isolated from Tehran, Iran. J. Basie med. sci. summer 13(13): 111-118.
  • Nordmann P, Naas T, Poirel L (2011) Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis 17: 1791-1798.
  • Pai H, Kang CI, Byeon JH, et al. (2004) Epidemiology and clinical features of bloodstream infection caused by AmpC-type β-lactamase- producing Klebsiella pneumoniae. J. Antimicrob. Agents and Chemother 48(10): 3720-3728.
  • Paliy IG, Kosintseva JF, Klushinа NP, Dukhina TN, Lipchanskaya IV (2019) The Unity of Spiritual Values of Russian Nations as the Common Platform for the Construction of Russian Identity. Journal of Environmental Treatment Techniques 7(4): 542-547.
  • Paterson DL, Ko WC, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, et al. (2004) Implications of extendedspectrum β-lactamase production in nosocomial infections international prospective study of Klebsiella pneumoniae bacteremia. Ann. Intern. Med 140: 26-32.
  • Philippon A, Jacoby GA (2002). Plasmid-determined AmpC-type β-lactamases. Antimicrob. Agents Chemother 46: 1–11.
  • Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods , and pathogenicity factors. Clin Microbiol. Rev 11: 589-603.
  • Rahamathulla MP, Harish BN, Mataseje L, Mulvey MR (2016) Carbapenem resistance mechanisms among blood isolates of Klebsiella pneumoniae and Escherichia coli. Afr. J. Microbiol. Res 10(2): 45-53.
  • Sarojamma V, Ramakrishna V (2011). Prevalence of ESBL-producing Klebsiella pneumoniae isolates in Tertiary Care Hospital. ISRN Microbiology 5 p.
  • Schiappa DA, Hayden MK, Matushek MG, Hashemi FN, Sullivan J, Smith KY, Miyashiro D, Quinn JP, Weinstein RA, Trenholme GM. (1996) Ceftazidime-resistant Klebsiella pneumoniae and Escherichia coli bloodstream infection: a case-control and molecular epidemiologic investigation. J. Infect. Dis 174: 529–536.
  • Seyedpour SM, Eftekhar F. (2014) Quinolone Susceptibility and Detection of qnr and aac(6’)-Ib-cr Genes in Community Isolates of Klebsiella pneumoniae. Jundishapur J. Microbiol 7(7): e11136.
  • Silva1 N, Oliveira M, Bandeira1 AC, Brites C (2006) Risk factors for infection by extended-spectrum β-lactamase producing Klebsiella pneumoniae in a Tertiary hospital in Salvador, Brazil. Braz J Infect Dis 10: 191-193.
  • Tasli H, Bahar IH (2005) Molecular characterization of TEM- and SHV- derived extended-spectrum β-lactamases in hospital-based enterobacteriaceae in Turkey 58: 162-167.
  • Wassef M, Behiry I, Younan M, El Guindy N, Mostafa S, Abada E (2014) Genotypic Identification of AmpC β-Lactamases Producation in Gram-Negative Bacilli Isolates. Jundishapur J. Microbiol 7(1): e8556.
  • Yan JJ, Ko WC, Jung YC, Chuang CL, Wu JJ (2002). Emergence of Klebsiella pneumoniae isolates producing inducible DHA-1β-lactamase in a university hospital in Taiwan. J. Clin. Microbiol. 40:3121-3126.
  • Zhang X, Chen D, XU G, Huang W, Wang X (2018) Molecular epidemiology and drug resistant mechanism in carbapenem resistant klebsiella pneumoniae isolated from pediatric patients in shanghai, china. J.ploSONE. march 13(13): 1-10.


This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.