Microbial selection of indigenous phosphate solubilizing microbe of tidal land as an inoculant in biochar
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Husna N, Budianta D, Munandar, Napoleon A. Microbial selection of indigenous phosphate solubilizing microbe of tidal land as an inoculant in biochar. Eurasia J Biosci. 2019;13(1), 267-276.

APA 6th edition
In-text citation: (Husna et al., 2019)
Reference: Husna, N., Budianta, D., Munandar, & Napoleon, A. (2019). Microbial selection of indigenous phosphate solubilizing microbe of tidal land as an inoculant in biochar. Eurasian Journal of Biosciences, 13(1), 267-276.

In-text citation: (Husna et al., 2019)
Reference: Husna, Nurul, Dedik Budianta, Munandar, and Adipati Napoleon. "Microbial selection of indigenous phosphate solubilizing microbe of tidal land as an inoculant in biochar". Eurasian Journal of Biosciences 2019 13 no. 1 (2019): 267-276.

In-text citation: (Husna et al., 2019)
Reference: Husna, N., Budianta, D., Munandar, and Napoleon, A. (2019). Microbial selection of indigenous phosphate solubilizing microbe of tidal land as an inoculant in biochar. Eurasian Journal of Biosciences, 13(1), pp. 267-276.

In-text citation: (Husna et al., 2019)
Reference: Husna, Nurul et al. "Microbial selection of indigenous phosphate solubilizing microbe of tidal land as an inoculant in biochar". Eurasian Journal of Biosciences, vol. 13, no. 1, 2019, pp. 267-276.

In-text citation: (1), (2), (3), etc.
Reference: Husna N, Budianta D, Munandar, Napoleon A. Microbial selection of indigenous phosphate solubilizing microbe of tidal land as an inoculant in biochar. Eurasia J Biosci. 2019;13(1):267-6.


This study was aimed to obtain phosphate solubilizing microorganism (PSM) isolates, which can be tolerant high Al and Fe content and low pH, to be utilized as an inoculant in biochar. Microbial isolation of indigenous PSMs was carried out on intertidal zone, with samples from four typological landscape (A, B, C, and D) collected from four villages in Delta Telang, Banyuasin, South Sumatra. The isolates that produced clear zones were purified and assayed with varying levels of AlPO4, FePO4, and pH. The selected PSM isolate was further tested to evaluate the phosphate-dissolving ability with liquid Pikovskaya media. The microbes obtained were three bacterial isolates and one phosphate-solubilizing fungus, which were identified as Paenibacillus alvei, Burkholderia cepacia, Acinetobacter baumannii, and Penicillium variabile. The identified microbes were tolerant to Al and Fe at concentrations up to 1500 mg L-1 and pH 3.0. Mixed cultures of the four isolates on liquid Pikovskaya media were able to dissolve Ca3(PO4)2 at 57.45 mg L-1, AlPO4 at 13.98 mg L-1 and FePO4 at 8.46 mg L-1. PSM viability on four types of biochar after three months of storage ranged from log population of 1.57 x 108–1.73 x 109 (log population 8.20–10.23 CFU g-1). The highest PSM viability was obtained in coconut shell biochar.


  • Alexander M (1977) Introduction to Soil Microbiology Second edition, John Willey and Son, Inc., New York.
  • Alihamsyah T (2004) Potensi dan pendayagunaan lahan rawa untuk peningkatan produksi padi. Ekonomi Padi dan Beras Indonesia. In F. Karino, Efendi, A.M. Fagi (Ed). Badan Litbang Pertanian, Jakarta.
  • Annisa W, Nursyamsi D (2016) Pengaruh ameliorant, pupuk dan sstem pengelolaan tanah sulfat masam terhadap hasil padi dan emisi metana. Jurnal Sumber Daya Lahan, 2(40): 51-64.
  • Aung S, Jeewon R, Pointing BS, Hyde DK (2009) Diversity and abundance of nematodetrapping fungi frnm decaying litter in terrestrial freshwater and mangrove habitats. Biodiversity and Conservation, 18(6): 1695-714. https://doi.org/10.1007/s10531-008-9553-7
  • Baydın A, Duran L, Şengüldür E (2017) Evaluation of Usefulness of Cardiopulmonary Resuscitation Education on Public Health Physicians. Journal of Clinical and Experimental Investigations, 8(4): 110-3. https://doi.org/10.5799/jcei.382406
  • BBSDLP (2014) Sumberdaya lahan pertanian indonesia: luas, penyebaran dan potensi ketersedian. Retrieved on 1 October 2018 from https://bbsdlp.litbang.pertanian.go.id/ind/index.php/publikasi-3/buku?download=17:road-map-penelitian-dan-pengembangan-lahan-kering
  • Behera BC, Singdevsachan SK, Mishra RR, Dutta SK, Thatoi HN (2014) Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—A review. Biocatalysis and Agricultural Biotechnology, 3(2): 97–110. https://doi.org/10.1016/j.bcab.2013.09.008
  • Chang CH, Yang SS (2009) Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresource Technology, 100(4): 1648-58. https://doi.org/10.1016/j.biortech.2008.09.009
  • Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P (2013) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fi brosis patient. International Journal of Systematic and Evolutionary Microbiology, 51(Pt5): 1729-35. https://doi.org/10.1099/00207713-51-5-1729
  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34(1): 33–41. https://doi.org/10.1016/j.apsoil.2005.12.002
  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2004) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology and Biochemistry, 37(10): 1970-4. https://doi.org/10.1016/j.soilbio.2005.02.025
  • Dang T, Mosley LM, Fitzpatrick R, Marschner P (2016) Addition of organic material to sulfuric soil can reduce leaching of protons, iron and aluminium. Geoderma, 271(1): 63-70. https://doi.org/10.1016/j.geoderma.2016.02.012
  • Dwijoseputro (2005) Dasar-dasar Mikrobiologi, Djembatan, Jakarta.
  • Egamberdieva, Reckling M, Wirth S (2017) Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. European Journal of Soil Biology, 78: 3842. https://doi.org/10.1016/j.ejsobi.2016.11.007
  • Fankem H, Nwaga D, Deubel A, Dieng L, Merbach W, Etoa FX (2006) Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree (Elaeis guineensis) rhizosphere in Cameroon. African Journal of Biotechnology, 5(24): 2450-60.
  • Gemici K, Şentürk S (2015) Surgical Treatment of Expansive Sacrococcygeal Pilonidal Sinus with the Spider Procedure. European Journal of General Medicine, 12(3): 203-7. https://doi.org/10.15197/ejgm.01392
  • Ghazanfarpor H, Pourkhosravani M, Mousavi SE (2013) Geomorphic systems affecting the Kerman.
  • Gilman JC (1971) A manual of soil Fungi, The Lowa State University Press, USA.
  • Goenadi DH, Siswanto A, Sugiarto Y (2000) Bioactivation of poorly soluble phosphate rocks with a phosphorus-solubilizing fungus. Science Society of America Journal, 64(3): 927–32.
  • Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agriculture Ecosystem & Environment, 206(1): 46–59. https://doi.org/10.1016/j.agee.2015.03.015
  • Hale L, Luth M, Crowley D (2015) Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biology and Biochemistry, 81: 228-35. https://doi.org/10.1016/j.soilbio.2014.11.023
  • Harahap F (2014) Mangosteen DNA Analysis (Garcinia mangostana L.) with molecular markers after gamma ray irradiation treatment. American-Eurasian Journal of Sustainable Agriculture, 7(2): 37-44.
  • Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates—solubilization mechanisms. Soil Biology and Biochemistry, 27(3): 257–63. https://doi.org/10.1016/0038-0717(94)00190-C
  • Khan MS, Zaidi A, Ahmad E (2014) Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: M. Khan, A. Zaidi and J. Musarrat (Ed.), Phosphate solubilizing microorganisms, Springer, USA. https://doi.org/10.1007/978-3-319-08216-5
  • Kheiry MV, Hafezi AM, Hesaraki S (2013) Bone Regeneration Using Nanotechnology–Calcium Silicate Nano-Composites. UCT Journal of Research in Science, Engineering and Technology, 1(1): 1-3.
  • Koesrini K, Anwar K (2017) Pengelolaan air,Bahan Organik dan Varietas Adaptif untuk Meningkatkan Hasil Padi di Lahan Rawa Pasang Surut. Berita Biologi, 16(1): 39-46.
  • Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Naidu R (2016) Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions. Environment International, 87: 1–12. https://doi.org/10.1016/j.envint.2015.10.018
  • Li XX, Liu Q, Liu XM, Shi HW, Chen SF (2016) Using synthetic biology to increase nitrogenase activity. Microbial Cell Factories, 15: 43. https://doi.org/10.1186/s12934-016-0442-6
  • Lin TF, Huang H, Shen FT, Young CC (2006) The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174. Bioresource Technology, 97(7): 957-60. https://doi.org/10.1016/j.biortech.2005.02.017
  • Liu FP, Liu HQ, Zhou HL, Dong ZG, Bai XH, Bai P, Qiao JJ (2014) Isolation and characterization of phosphate-solubilizing bacteria from betel nut (Areca catechu) and their effects on plant growth and phosphorus mobilization in tropical soils. Biology and Fertility of Soils, 50(6): 927–37. https://doi.org/10.1007/s00374-014-0913-z
  • Masganti M, Nurhayati N, Yuliani N (2017) Peningkatan produktivitas padi di lahan pasang surut dengan pupuk P dan kompos jerami padi. Jurnal Tanah dan Iklim, 1(41): 17-24.
  • Masulili A, Utomo WH, Syechfani MS (2010) Rice husk biochar for rice based cropping system in acid soil the characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. Journal of Agricultural Science, 2(1): 39-47. https://doi.org/10.5539/jas.v2n1p39
  • Noya AI, Ghulamahdi M, Sopandie D, Sutandi A, Melati M (2014) Pengaruh kedalaman muka air dan amelioran terhadap produktivitas kedelai di lahan sulfat masam. Pangan, 2(23): 120-33.
  • Pelczar MSE, Chan CS (2005) Dasar- Dasar Mikrobiologi 2. UI Press, Jakarta.
  • Perez E, Sulbarán M, Ball MM, Yarzábal LA (2007) Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biology and Biochemistry, 39(11): 2905-14. https://doi.org/10.1016/j.soilbio.2007.06.017
  • Pradhan M, Sahoo RK, Pradhan C, Tuteja N, Mohanty S (2016) Contribution of native phosphorous-solubilizing bacteria of acid soils on phosphorous acquisition in peanut (Arachis hypogaea L.). Protoplasma, 254(6): 2225-36. https://doi.org/10.1007/s00709-017-1112-1
  • Purnomo E, Syaifuddin H, Fahmi A, Kasim F, Yasin MHG (2000) The variation of soil pH, aluminium, and phosphorus within the root zone of maize strains differing in their tolerance to aluminium toxicity. Jurnal Tanah Tropika, (10): 171-8.
  • Rajkumar M, Freitas H (2008) Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresource Technology, 99(9): 3491–8. https://doi.org/10.1016/j.biortech.2007.07.046
  • Sabaruddin (2004) Respon bakteri pelarut fosfat akibat pengapuran pada lahan HTI Acacia mangium pasca terbakar. Jurnal Tanah Tropika, 10(1): 55-62.
  • Santi LP, Goenadi DH (2010) Pemanfaatan bio-char sebagai pembawa mikroba untuk pemantap agregat tanah Ultisol dari Taman Bogo-Lampung. Menara Perkebunan, 78(2): 52-60.
  • Santosa E, Rohani CBG (2007) Mikroorganisme pelarut fosfat. In R. Saraswati, E. Husein and R.D.M Simanungkalit (Ed.), Metode analisis biologi tanah, Balai Besar LITBANG, Bogor: 39-145.
  • Sperber JI (1958) Solution of apatite by soil microorganisms producingvborganic acids. Australian Journal of Agricultural Research, 9: 782-7. https://doi.org/10.1071/AR9580782
  • Suryantini (2011) Populasi bakteri pelarut fosfat pada lahan masam Lampung Timur dan Banjarnegara Jawa tengah. Prosiding Seminar Hasil Penelitian Tanaman Aneka Kacang dan Umbi: 189-195.
  • Suwanda MH, Noor M (2014) Kebijakan pemanfaatan lahan rawa pasang surut untuk mendukung kedaulatan pangan nasional. Jurnal Sumber Daya Lahan, 8(3): 31-40.
  • Tate (1995) Soil Microbiologi, John Wiley and Souns, New York.
  • Türkyürek C, Ercan M, Oğuz E, Erdoğan S, Yılmaz FM (2015) Comparison of eGFR Values Calculated by Using Serum Cystatin C and Serum Creatinine in Patients with Diabetes Mellitus. J Clin Exp Invest., 6(2): 91-5. https://doi.org/10.5799/ahinjs.01.2015.02.0496
  • Vanek SJ, Thies J, Wang B, Hanley K, Lehmann L (2016) Pore-size and water activity effects on survival of Rhizobium tropici in biochar inoculant carriers. Journal of Microbial & Biochemical Technology, 8(4): 296-306. https://doi.org/10.4172/1948-5948.1000300
  • Wagner HG, Wolf DC (1998) Carbon transformation and soil organic matter formation. In D.M. Silvia, J.J. Fuhrmann, P.G. Hartel and D.A. Zuberer (Ed.), Principles and applications of soil microbiology, Prentice Hall, New Jersey: 218-57.
  • Wei Y, Zhao Y, Shi M, Cao Z, Lu Q, Yang T, Wei Z (2017) Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresource Technology, 247: 190–9. https://doi.org/10.1016/j.biortech.2017.09.092
  • Widawati S, Suliasih, Muharam A (2010) Pengaruh Kompos yang Diperkaya Penambat Nitrogen dan Pelarut Fosfat Terhadap Pertumbuhan Tanaman Kapri. Jurnal Hortikultura, 20(3): 207-15.
  • Zheng H, Wang X, Luo X, Wang Z, Xing B (2018) Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation. Science of the Total Environment, 610-611: 951–960. https://doi.org/10.1016/j.scitotenv.2017.08.166


This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.