Investigation of the influence of the thermal effects on the FeCrAl alloys Kh15Yu5 and Kh23Yu5
  • Article Type: Research Article
  • Eurasian Journal of Biosciences, 2019 - Volume 13 Issue 2, pp. 687-694
  • Published Online: 07 Jul 2019
  • Article Views: 39 | Article Download: 19
  • Open Access Full Text (PDF)
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Khusain BK, Brodskiy AR, Yaskevich VI, Zhurinov MZ, Abilmagzhanov AZ. Investigation of the influence of the thermal effects on the FeCrAl alloys Kh15Yu5 and Kh23Yu5. Eurasia J Biosci. 2019;13(2), 687-694.

APA 6th edition
In-text citation: (Khusain et al., 2019)
Reference: Khusain, B. K., Brodskiy, A. R., Yaskevich, V. I., Zhurinov, M. Z., & Abilmagzhanov, A. Z. (2019). Investigation of the influence of the thermal effects on the FeCrAl alloys Kh15Yu5 and Kh23Yu5. Eurasian Journal of Biosciences, 13(2), 687-694.

Chicago
In-text citation: (Khusain et al., 2019)
Reference: Khusain, B. Kh., A. R. Brodskiy, V. I. Yaskevich, M. Zh. Zhurinov, and A. Z. Abilmagzhanov. "Investigation of the influence of the thermal effects on the FeCrAl alloys Kh15Yu5 and Kh23Yu5". Eurasian Journal of Biosciences 2019 13 no. 2 (2019): 687-694.

Harvard
In-text citation: (Khusain et al., 2019)
Reference: Khusain, B. K., Brodskiy, A. R., Yaskevich, V. I., Zhurinov, M. Z., and Abilmagzhanov, A. Z. (2019). Investigation of the influence of the thermal effects on the FeCrAl alloys Kh15Yu5 and Kh23Yu5. Eurasian Journal of Biosciences, 13(2), pp. 687-694.

MLA
In-text citation: (Khusain et al., 2019)
Reference: Khusain, B. Kh. et al. "Investigation of the influence of the thermal effects on the FeCrAl alloys Kh15Yu5 and Kh23Yu5". Eurasian Journal of Biosciences, vol. 13, no. 2, 2019, pp. 687-694.

Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Khusain BK, Brodskiy AR, Yaskevich VI, Zhurinov MZ, Abilmagzhanov AZ. Investigation of the influence of the thermal effects on the FeCrAl alloys Kh15Yu5 and Kh23Yu5. Eurasia J Biosci. 2019;13(2):687-94.

Abstract

FeCrAl alloys having the composition of chromium added to iron is peculiar by in the increased corrosion resistance of the new metallic alloy compared to pure iron. Such FeChAl alloys are used in numerous different applications as a corrosion resistant, oxidation resistant and heat resistant material. Owing to their resistance and good mechanical characteristics, FeCrAl alloys are regarded as one of the main structural materials for use in nuclear power plants. They are commonly used within industrial applications where high-temperature oxidation resistance is needed. The good resistance to oxidation, sulfur resistance and corrosion resistance are attained due to a dense oxide film formed on the surface that prevents the rapid further degradation of the material. In this study, two FeCrAl alloys are investigated - Kh15Yu5 (15%Cr5%Al) and Kh23Yu5 (23%Cr5%Al). Using the method of Mössbauer spectroscopy, the study was conducted on the influence of temperature and period of heating on the cold-rolled ribbon of FeCrAl alloys Kh15Yu5 and Kh23Yu5 with the thickness of 50 µm. It is shown that these alloys, as a result of thermal effect, are prone to the layering in solid solution, forming the areas depleted and enriched with chromium and aluminum.

References

  • Bonny G, Terentyev D, Malerba L, Lukon E (2009) The hardening of iron–chromium alloys under thermal ageing: An atomistic study. Journal of Nuclear Materials, 385(2): 278-283. https://doi.org/10.1016/j.jnucmat.2008.12.002
  • Chen D, Kimura A, Han W (2014) Correlation of Fe/Cr phase decomposition process and age-hardening in Fe–15Cr ferritic alloys. Journal of Nuclear Materials, 455: 436-439. https://doi.org/10.1016/j.jnucmat.2014.07.069
  • Chen H, Kim SH, Long C, Kim C, Jang C (2018) Oxidation behavior of high-strength FeCrAl alloys in a high-temperature supercritical carbon dioxide environment. Progress in Natural Science-Materials International, 28(6): 731-739. https://doi.org/10.1016/j.pnsc.2018.11.004
  • Cunat PJ (2004) Alloying elements in stainless steel and other chromium-containing alloys. Received from http://www.euro-inox.org/pdf/map/AlloyingElements_EN.pdf
  • Danoix F, Auge P (2000) Atom probe studies of the Fe–Cr system and stainless steels aged at intermediate temperature: a review. Materials Characterization, 44(1-2): 177-201. https://doi.org/10.1016/S1044-5803(99)00048-0
  • Dimyati A, Penkalla HJ, Untoro P, Naumenko D, Quadakkers WJ, Mayer J (2003) High-temperature oxidation of FeCrAl alloys: the effect of Mg incorporation into the alumina scale. Zeitschrift für Metallkunde, 94(3): 180-187. https://doi.org/10.3139/146.030180
  • Eklund J, Jönsson B, Persdotter A, Liske J, Svensson JE, Jonsson T (2018) The influence of silicon on the corrosion properties of FeCrAl model alloys in oxidizing environments at 600 °C. Corrosion Science, 144: 266-276. https://doi.org/10.1016/j.corsci.2018.09.004
  • Gasik M (2013) Handbook of ferroalloys: theory and technology. Oxford, UK: Elsevier Ltd.
  • Gerasimov SA, Novakova AA, Kraposhin VS, Bocharov PV (2012) Nanoclusters in solid solutions of iron-chromium and their influence on hardness of the nitrided layer of steel 38Kh2MYuA. Nauka i Obrazovaniye: Nauchnoye Izdaniye MGTU im. N. E. Baumana, 11: 519-540. https://doi.org/10.7463/1112.0496806
  • IARC Working Group on the Evaluation of Carcinogenic Risk to Humans (1990). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 49. Lyon: International Agency for Research on Cancer.
  • Israelsson N (2014) High Temperature Oxidation and Chlorination of FeCrAl Alloys. Department of Chemical and Biological Engineering. Göteborg, Sweden: Chalmers University of Technology.
  • Israelsson N, Unocic KA, Hellström K, Svensson JE, Johansson LG (2015) Cyclic corrosion and chlorination of an FeCrAl Alloy in the presence of KCl. Oxidation of Metals, 84: 269-290. https://doi.org/10.1007/s11085-015-9554-3
  • Kuwano H, Ishikawa Y, Yoshimura T, Hamaguchi Y (1991) Characterization of the spinodal decomposition of Fe- Cr alloys by Mössbauer spectroscopy. Hyperfine Interact, 69(1-4): 501-504. https://doi.org/10.1007/BF02401874
  • Litvinov VS, Karakishev SD, Ovchinnikov VV (1982) Nuclear gamma resonance spectroscopy of alloys. Moscow: Metallurgiya.
  • Maltseva NV, Postnov AYu, Lavrishcheva SA, Kirshin AI (2016) Block Al-Zr-Ce- catalysts for hydrogen oxidation. Izvestiya SPbGTI (TU), 32: 28-33. https://doi.org/10.15217/issn1998984-9.2015.32.28
  • Mennicke C, Schumann E, Ruhle M, Hussey RJ, Sproule GI, Graham MJ (1998) The Effect of Yttrium on the Growth Process and Microstructure of α-Al2O3 on FeCrAl. Oxidation of Metals, 49(5/6): 455-466. https://doi.org/10.1023/A:1018803113093
  • Mishchenko VG, Lazechnyi IN, Liakishev VYu (2010) Sparingly alloyed heat resistant steels for heat-treatment furnace heaters. Novi materialy i tekhnologii v metalurgii ta mashinobuduvanni, 2: 63-67.
  • Mishchenko VG, Tutyk VA, Grechka AV (2015) Study on the effects of material surface quality on the performance properties of heating elements. Stroitelstvo, materialovedeniye, mashinostroyeniye, Starodubovskiye chteniya.
  • Pechenkin VA, Chernova AD, Molodtsov VL, Lysova GV, Epov GA (2013) Radiation-induced segregation and properties of construction materials under irradiation. Yadernaya Fizika i Inzhiniring, 5(4), 443-461.
  • Plemiannikova NM, Gorokhov NA, Zhukov LL (1987) Zhurnal Chernaya Metallurgiya, series “Metallovedeniye i termicheskaya obrabotka), 5: 45-46.
  • Postnov AYu, Maltseva NV, Dolgushina AS (2007) Proceeding from The Fourth Russian Conference “Physical issues of hydrogen energetics”. St. Petersburg: Physico-technical Institute named after A. F. Ioffe, pp. 1-7.
  • Prescott R, Graham MJ (1992) The oxidation of iron-aluminum alloys. Oxidation of metals, 38(1-2): 73-87. https://doi.org/10.1007/BF00665045
  • Rebak RB (2017) Iron-chrome-aluminum alloy cladding for increasing safety in nuclear power plants. EPJ Nuclear Sciences & Technologies, 3(34): 1-8. https://doi.org/10.1051/epjn/2017029
  • Rebak RB, Gupta VK, Larsen M (2018) Oxidation characteristics of two FeCrAl alloys in air and steam from 800 °C to 1300 °C. JOM, 70: 1484-1492. https://doi.org/10.1007/s11837-018-2979-9
  • Schwartz LH, Chandra D (1971) Hyperfine fields in concentrated Fe-Cr alloys. Physica Status Solidi (B), 45: 201-208. https://doi.org/10.1002/pssb.2220450122
  • Solomon HD, Levinson LM (1978) Mössbauer effect study of ‘475 °C embrittlement’ of duplex and ferritic stainless steels. Acta Metallurgica, 26(3): 429-442. https://doi.org/10.1016/0001-6160(78)90169-4
  • Taniguchi S, Andoh A (2002) Improvement in the Oxidation Resistance of an Al-Deposited Fe–Cr–Al Foil by Preoxidation. Oxidation of Metals, 58(5-6): 545-562. https://doi.org/10.1023/A:1020577107126
  • Trindade B, Vilar R (1991) Influence of nickel on 475 °C embrittlement of Fe−Cr−Ni alloys: Mössbauer effect study. Hyperfine Interact, 66(1-4): 351-358. https://doi.org/10.1007/BF02395885
  • Wertheim GK, Jaccarino V, Wernick JH, Buchanan DNE (1969) Mössbauer Effect. NA Bursov, VV Skliarevskiy (eds.). Moscow: Atomizdat.
  • Xu X, Odqvist J, Colliander MH, King S, Thuvander M, Steuwer A, Hedström P (2017) Effect of cooling rate after solution treatment on subsequent phase separation during aging of Fe-Cr alloys: A small-angle neutron scattering study. Acta Materialia, 134: 221-229. https://doi.org/10.1016/j.actamat.2017.06.001
  • Yamamoto Y, Snead MA, Field KG, Terrani KA (2017) Handbook of the materials properties of FeCrAl alloys for nuclear power production applications. https://doi.org/10.2172/1400207

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.