AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Ravichandran M, Debashis R, Subramanyam K, Govindaraj M. Genetic linkage map construction for fibre quality traits in intraspecific upland cotton (Gossypium hirsutum L.). Eurasia J Biosci. 2019;13(1), 127-134.

APA 6th edition
In-text citation: (Ravichandran et al., 2019)
Reference: Ravichandran, M., Debashis, R., Subramanyam, K., & Govindaraj, M. (2019). Genetic linkage map construction for fibre quality traits in intraspecific upland cotton (Gossypium hirsutum L.). Eurasian Journal of Biosciences, 13(1), 127-134.

Chicago
In-text citation: (Ravichandran et al., 2019)
Reference: Ravichandran, Mariappan, Rana Debashis, Koona Subramanyam, and Mahalingam Govindaraj. "Genetic linkage map construction for fibre quality traits in intraspecific upland cotton (Gossypium hirsutum L.)". Eurasian Journal of Biosciences 2019 13 no. 1 (2019): 127-134.

Harvard
In-text citation: (Ravichandran et al., 2019)
Reference: Ravichandran, M., Debashis, R., Subramanyam, K., and Govindaraj, M. (2019). Genetic linkage map construction for fibre quality traits in intraspecific upland cotton (Gossypium hirsutum L.). Eurasian Journal of Biosciences, 13(1), pp. 127-134.

MLA
In-text citation: (Ravichandran et al., 2019)
Reference: Ravichandran, Mariappan et al. "Genetic linkage map construction for fibre quality traits in intraspecific upland cotton (Gossypium hirsutum L.)". Eurasian Journal of Biosciences, vol. 13, no. 1, 2019, pp. 127-134.

Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Ravichandran M, Debashis R, Subramanyam K, Govindaraj M. Genetic linkage map construction for fibre quality traits in intraspecific upland cotton (Gossypium hirsutum L.). Eurasia J Biosci. 2019;13(1):127-34.

Abstract

The quantitative traits such as fibre length, fibre strength, fineness, uniformity, color and elongation are considered as important fibre quality traits fetches high market price for cotton, thus identification of quantitative trait loci (QTL) for fibre quality traits in cotton (G.hirsutum) would be beneficial for cotton fibre yield and quality improvement . Hence the main objective of this study was to identify QTLs for fibre quality traits using an intraspecific mapping population derived from a cross between JKC737 (G.hirsutum) and JKC725 (G.hirsutum) comprising 180 F6 – RILs. Population study was carried out for 3867 primer pairs using two parental genotypes (JKC737 & JKC725) of a mapping population developed for fibre quality related traits; only 174 SSR were polymorphic. Owing to a low level of polymorphism between the parental genotypes and a high degree of segregation distortion in recombinant inbred lines, genotypic data of only 120 polymorphic SSR on the mapping population consisting of 180 RIL could be used for construction of a linkage map; 120 SSR loci were mapped on eighteen different linkage groups that covered a total genetic distance of 2883.8cM. Hopefully this map will be enriched with more SSR loci in future and will prove useful for identification of quantitative trait loci/genes for molecular breeding involving improvement of fibre strength and other related traits in cotton.

References

  • Abdurakhmonov IY, Kohel RJ, Yu JZ, Pepper AE, Abdullaev AA, Kushanov FN, Abdukarimov A (2008) Molecular diversity and association mapping of fibre quality traits in exotic G. hirsutum L. germplasm. Genomics 92(6): 478-487. https://doi.org/10.1016/j.ygeno.2008.07.013
  • Burr B, Evola SV, Burr FA, Beckmann JS (1983) The application of restriction fragment length polymorphism to plant breeding. Genetic Engineering 5: 45-59. https://doi.org/10.1007/978-1-4684-4556-5_4
  • Causse M, Fulton T, Cho Y, Ahn S, Chunwongse J, Wu K (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138: 1251-1274.
  • Chee PW, Rong J, Williams-coplin D, Schulze SR, Paterson AH (2004) EST derived PCR-based markers for functional gene homologues in cotton. Genome 47: 449-462. https://doi.org/10.1139/g04-002
  • Chen Z J, Scheffler B E, Dennis E, et al. Toward sequencing cotton (Gossypium) genomes. Plant Physiol, 2007, 145: 1303–1310. https://doi.org/10.1104/pp.107.107672
  • Cotton: Origin, History, Technology, and Production. New York: Wiley, 1999. 33–63.
  • Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity (Edinb) 101: 5-18. https://doi.org/10.1038/hdy.2008.35
  • Gutierrez OA, Basu S, Saha S, Jenkins JN, Shoemaker DB, Cheathem CL (2002) Genetic distance among selected cotton genotypes and its relationship with F2 performance. Crop Sci. 42: 1841-1847. https://doi.org/10.2135/cropsci2002.1841
  • Han ZG, Guo WZ, Song XL, Zhang TZ (2004) Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol.Gen. Genomics 272: 308-327. https://doi.org/10.1007/s00438-004-1059-8
  • He DH, Lin ZX, Zhang XL, Nie YC, Guo XP, Zhang YX (2007) QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum x Gossypium barbadense. Euphytica 153: 181-197. https://doi.org/10.1007/s10681-006-9254-9
  • He XH, Qin H, Hu Z, Zhang T, Zhang YM (2011) Mapping of epistatic quantitative trait loci in four-way crosses. Theor. Appl. Genet. 122: 33-48. https://doi.org/10.1007/s00122-010-1420-8
  • Kohel RJ, Yu J, Park Y, Lazo GR (2001) Molecular mapping and characterization of traits controlling fibre quality in cotton. Euphytica 121: 163-172. https://doi.org/10.1023/A:1012263413418
  • Kumar N, Kulwal P, Balyan H, Gupta P (2007) QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol. Breed. 19: 163-177. https://doi.org/10.1007/s11032-006-9056-8
  • Kumar P, Gupta VK, Misra AK, Modi DR, Pandey BK (2009) Potential of molecular markers in plant biotechnology. Plant Omics Journal 2(4): 141-162.
  • Kumar P, Gupta VK, Misra AK, Modi DR, Pandey BK (2009) Potential of molecular markers in plant biotechnology. Plant Omics Journal 2(4): 141-162.
  • Kumar P, Paterson AH, Chee PW (2006) Predicting intron sites by aligning cotton ESTs with Arabidopsis genomic DNA. Journal of Cotton Science 10: 29-38.
  • Lacape JM, Jacobs J, Arioli T, Derijcker R, Forestier-Chiron N, Llewellyn D (2009) A new interspecific Gossypium hirsutum x G. barbadense, RIL population: towards a unified consensus linkage map of tetraploid cotton. Theor. Appl. Genet. 119: 281-292. https://doi.org/10.1007/s00122-009-1037-y
  • Lacape JM, Llewellyn D, Jacobs J, Arioli T, Becker D, Calhoun S (2010) Meta-analysis of cotton fibre quality QTLs across diverse environments in a Gossypium hirsutum x G. barbadense RIL population. BMC Plant Biol. 10: 132. https://doi.org/10.1186/1471-2229-10-132
  • Lacape JM, Nguyen TB, Courtois B, Belot JL, Giband M, Gourlot JP (2005) QTL analysis of cotton fibre quality using multiple Gossypium hirsutum x Gossypium barbadense backcross generations. Crop Sci. 45: 123-140. https://doi.org/10.2135/cropsci2005.0123a
  • Lacape JM, Nguyen TB, Thibivilliers S, Bojinnov TB, Courtois B, Cantrell RG, Burr B, Hau B (2003) A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum · Gossypium barbadense backcross population. Genome 46:612–626. https://doi.org/10.1139/g03-050
  • Li HB, Kilian A, Zhou MX, Wenzl P, Huttner E, Mendham N (2010) Construction of a high-density composite map and comparative mapping of segregation distortion regions in barley. Mol Genet Genomics 284:319-331. https://doi.org/10.1007/s00438-010-0570-3
  • Li S, Wang J, Zhang L (2015) Inclusive composite interval mapping of QTL by environment interactions in biparental populations. PLoS One 10: 1-22. https://doi.org/10.1371/journal.pone.0132414
  • Li W, Lin Z, Zhang X (2007) A novel segregation distortion in intraspecific population of Asian cotton (Gossypium arboretum L.) detected by molecular markers. J. Genet. Genomics 34: 634-640. https://doi.org/10.1016/S1673-8527(07)60072-1
  • Liu R, Wang B, Guo W, Qin Y, Wang L, Zhang Y, Zhang T (2012) Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L. Mol. Breed. 29: 297-311. https://doi.org/10.1007/s11032-011-9547-0
  • Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor. Applied Genet. 105: 622-628. https://doi.org/10.1007/s00122-002-0970-9
  • Luo L, Xu S (2003) Mapping viability loci using molecular markers. Heredity 90: 459-467. https://doi.org/10.1038/sj.hdy.6800264
  • Mangelsdorf PC, Jones DF (1926) The expression of Mendelian factors in the gametophyte of maize. Genetics 11: 423-455.
  • McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR (1988) Molecular mapping of rice chromosomes. Theor. Applied Genet. 76: 815-829. https://doi.org/10.1007/BF00273666
  • Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, StellyDM, Chen ZJ (2004) Genetic mapping and QTL analysis of fibre-related traits in cotton (Gossypium). Theor Appl Genet 108:280–291. https://doi.org/10.1007/s00122-003-1433-7
  • Park YH, Alabady MS, Ulloa M, Sickler B, Wilkins TA, Yu J (2005) Genetic mapping of new cotton fibre loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol. Genet. Gen. 274: 428-441. https://doi.org/10.1007/s00438-005-0037-0
  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726. https://doi.org/10.1038/335721a0
  • Percival A, Wendel J, Stewart J. Taxonomy and germplasm resourses.In: Smith C W, Cothren J T, eds.
  • Pereira MG, Lee M, Bramel-Cox P, Woodman W, Doebley J, Whitkus R (1994) Construction of an RFLP in sorghum and comparative mapping in maize. Genome 37: 236-243. https://doi.org/10.1139/g94-033
  • Qin HD, Guo WZ, Zhang YM, Zhang TZ (2008) QTL mapping of yield and fibre traits based on a four-way cross population in Gossypium hirsutum L. Theor. Appl. Genet. 117: 883-894. https://doi.org/10.1007/s00122-008-0828-x
  • Qureshi SN, Saha S, Kantety RV, Jenkins JN (2004) EST-SSR: a new class of genetic markers in cotton. The Journal of cotton science 8: 112-123.
  • Rong JK, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveal features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166: 389-417. https://doi.org/10.1534/genetics.166.1.389
  • Saha S, Karaca M, Jenkins JN, Zipf AE, Reddy OUK, Kantety RV (2003) Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica 130: 355-364. https://doi.org/10.1023/A:1023077209170
  • Shen XL, Zhang TZ, Guo WZ, Zhu XF, Zhang XY (2006) Mapping fibre and yield QTLs with main, epistatic, and QTL x environment interaction effects in recombinant inbred lines of upland cotton. Crop Sci. 46: 61-66. https://doi.org/10.2135/cropsci2005.0056
  • Song X, Wang K, Guo W, Zhang J, Zhang T (2005) A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. and Gossypium barbadense L. Genome 48: 378-390. https://doi.org/10.1139/g04-126
  • Sun FD, Zhang JH, Wang SF, Gong WK, Shi YZ, Liu AY (2012) QTL mapping for fibre quality traits across multiple generations and environments in upland cotton. Mol. Breed. 30: 569-582. https://doi.org/10.1007/s11032-011-9645-z
  • Tanksley SD, Miller JC, Paterson AH, Bernatzky R (1988) Molecular mapping of plant chromosomes. Chromosome structure and function 157-172. https://doi.org/10.1007/978-1-4613-1037-2_7
  • Taylor DR, Ingvarsson PK (2003) Common features of segregation distortion in plants and animals. Genetica 117: 27-35. https://doi.org/10.1023/A:1022308414864
  • Ulloa M, Meredith WR, Shapplet ZW, Kahler AL (2002) RFLP genetic linkage maps from four F2:3 population and a joinmap of Gossypium hirsutum L. Theor Appl Genet 104:200–208. https://doi.org/10.1007/s001220100739
  • Ulloa M, Saha S, Jenkins JN, Meredith Jr WR, McCarty Jr JC, Stelly DM (2005) Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) joinmap. J. Hered. 96: 132-144. https://doi.org/10.1093/jhered/esi020
  • Van Esbroeck GA, Bowman DT, Calhoun DS, May OL (1998) Changes in the genetic diversity of cotton in the U.S. from 1970 to 1995. Crop Sci. 38: 33-37. https://doi.org/10.2135/cropsci1998.0011183X003800010006x
  • Wang K, Song XL, Han ZG, Guo WZ, Yu JZ, Sun J, PanJJ, Kohel RJ, Zhang TZ (2006) Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet 113:73–80. https://doi.org/10.1007/s00122-006-0273-7
  • Wendel JF, Brubaker CL, Percival AE (1992) Genetic diversity in Gossypium hirsutum and the origin of upland cotton. Am. J. Bot. 79: 1291-1310. https://doi.org/10.1002/j.1537-2197.1992.tb13734.x
  • Wu J, Gutierrez OA, Jenkins JN, McCarty JC, Zhu J (2009) Quantitative analysis and QTL mapping for agronomic and fibre traits in an RI population of upland cotton. Euphytica 165: 231- https://doi.org/10.1007/s10681-008-9748-8
  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding from publications to practice. Crop Sci. 48: 391. https://doi.org/10.2135/cropsci2007.04.0191
  • Yu J, Zhang K, Li S, Yu S, Zhai H, Wu M (2013) Mapping quantitative trait loci for lint yield and fibre quality across environments in a Gossypium hirsutum x Gossypium barbadense backcross inbred line population. Theor. Appl. Genet. 126: 275-287. https://doi.org/10.1007/s00122-012-1980-x
  • Yu JZ, Kohel RJ, Fang DD, Cho J, Van Deynze A, Ulloa M (2012) A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome. Genes Genomes Genet. 2: 43-58. https://doi.org/10.1534/g3.111.001552
  • Yu Y, Yuan DJ, Liang SG, Li XM, Wang XQ, Lin ZX (2011) Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. BMC Genomics 12:15. https://doi.org/10.1186/1471-2164-12-15
  • Zhang K, Zhang J, Ma J, Tang S, Liu D, Teng Z (2012) Genetic mapping and quantitative trait locus analysis of fibre quality traits using a three-parent composite population in upland cotton ( Gossypium hirsutum L.) Mol. Breed. 29: 3350348. https://doi.org/10.1007/s11032-011-9549-y
  • Zhang L, Li H, Ding J, Wu J, Wang J (2015) Quantitative trait locus mapping with background control in genetic populations of clonal F1 and double cross. J. Integr. Plant Biol. 57: 1046-1062. https://doi.org/10.1111/jipb.12361
  • Zhang ZS, Hu MC, Zhang J, Liu DJ, Zheng J, Zhang K (2009) Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fibre quality traits in upland cotton (Gossypium hirsutum L.) Mol. Breed. 24: 49-61. https://doi.org/10.1007/s11032-009-9271-1
  • Zhang ZS, XiaoYH, Luo M, Li XB, Luo XY, Hou L. (2005) Construction of a genetic linkage map and QTL analysis of fibre-related traits in upland cotton (Gossypium hirsutum L.) Euphytica 144: 91-99. https://doi.org/10.1007/s10681-005-4629-x
  • Zhao L, Lv Y, Cai C, Tong X, Chen X, Zhang W (2012) Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genomics 13: 539. https://doi.org/10.1186/1471-2164-13-539
  • Zhu C, Wang C, Zhang YM (2007) Modeling segregation distortion for viability selection. I. Reconstruction of linkage maps with distorted markers. Theor. Appl. Genet. 114: 295-305. https://doi.org/10.1007/s00122-006-0432-x

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.