Expression of copper toxicity in the rice-field cyanobacterium Anabaena oryzae Ind4
  • Article Type: Research Article
  • Eurasian Journal of Biosciences, 2019 - Volume 13 Issue 1, pp. 57-67
  • Published Online: 06 Feb 2019
  • Article Views: 718 | Article Download: 339
  • Open Access Full Text (PDF)
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Goswami S, Ahad RIA, Syiem MB. Expression of copper toxicity in the rice-field cyanobacterium Anabaena oryzae Ind4. Eurasia J Biosci. 2019;13(1), 57-67.

APA 6th edition
In-text citation: (Goswami et al., 2019)
Reference: Goswami, S., Ahad, R. I. A., & Syiem, M. B. (2019). Expression of copper toxicity in the rice-field cyanobacterium Anabaena oryzae Ind4. Eurasian Journal of Biosciences, 13(1), 57-67.

In-text citation: (Goswami et al., 2019)
Reference: Goswami, Smita, Rabbul Ibne A. Ahad, and Mayashree B. Syiem. "Expression of copper toxicity in the rice-field cyanobacterium Anabaena oryzae Ind4". Eurasian Journal of Biosciences 2019 13 no. 1 (2019): 57-67.

In-text citation: (Goswami et al., 2019)
Reference: Goswami, S., Ahad, R. I. A., and Syiem, M. B. (2019). Expression of copper toxicity in the rice-field cyanobacterium Anabaena oryzae Ind4. Eurasian Journal of Biosciences, 13(1), pp. 57-67.

In-text citation: (Goswami et al., 2019)
Reference: Goswami, Smita et al. "Expression of copper toxicity in the rice-field cyanobacterium Anabaena oryzae Ind4". Eurasian Journal of Biosciences, vol. 13, no. 1, 2019, pp. 57-67.

In-text citation: (1), (2), (3), etc.
Reference: Goswami S, Ahad RIA, Syiem MB. Expression of copper toxicity in the rice-field cyanobacterium Anabaena oryzae Ind4. Eurasia J Biosci. 2019;13(1):57-67.


Effect of copper on the rice-field cyanobacterial isolate Anabaena oryzae Ind4 was analysed after a five-day exposure period. Copper affected vital parameters of the organism in a dose-dependent manner. The organism was to an extent tolerant to copper at 5 mg L-1 concentration; at this concentration cells showed comparable biochemical activities to that of the controlled cultures. However, beyond this level any increase in copper concentration led to significant adverse effects on all parameters of the organism studied. High copper levels led to severe morphological and ultra-structural changes in the cells distinctly visible under the scanning and transmission electron microscope.


  • Ahad RIA, Goswami S, Syiem MB (2017) Biosorption and equilibrium isotherms study of cadmium removal by Nostoc muscorum Meg 1: morphological, physiological and biochemical alterations. 3Biotech 7:104.
  • Ahad RIA, Kynshi BL, Syiem MB (2018) Protective role of Ca2+ towards Cu2+ induced toxicity on photosynthetic pigments, morphology and ultra-structures of the cyanobacterium Nostoc muscorum Meg 1. Biosci. Biotech. Res. Asia 15(3):591-601.
  • Ahad RIA, Syiem MB (2018a) Ameliorating potential of Ca2+ on Cd2+ induced toxicity on carbon assimilation in the cyanobacterium Nostoc muscorum Meg 1. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences 4(2):322-337.
  • Ahad RIA, Syiem MB (2018c) Copper-induced morphological, physiological and biochemical responses in the cyanobacterium Nostoc muscorum Meg 1. Nature Environment and Pollution Technology 17(4)
  • Area, Production and yield of principall crops in Meghalaya. Directorate of Economics & Statistics, Government of Meghalaya, Shillong.
  • Arunakumara KKIU, Xuecheng Z (2009) Effects of heavy metals (Pb2+ and Cd2+) on the ultrastructure, growth and pigment contents of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Chinese Journal of Oceanology and Limnology 27(2):383-388.
  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1999) Agarose gel electrophoresis. Short protocols in molecular biology, 2nd edn. Wiley, New York.
  • Aziz MA, Hashem MA (2003) Role of cyanobacteria in improving fertility of saline soil. Pakistan Journal of Biological Sciences 6(20):1751-1752.
  • Balkhair SK, Ashraf MA (2016) Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi Journal of Biological Sciences 26(1):S32-S44.
  • Bennett A, Bogorad L (1973) Complementary chromatic adaptation in filamentous blue green algae. Journal of Cell Biology 58: 419-435
  • De Vos CHR, Schat H, De Waal MAM, Vooijs R, Ernst WHO (1991) Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silenecucubalis. Plant Physiology 82(4): 523-528.
  • Desikachary TV (1959) Cyanophyta. Indian Council of Agricultural research, New Delhi, 686.
  • Diengdoh OL, Syiem MB, Pakshirajan K, Rai AN (2017) Zn2+ sequestration by Nostoc muscorum: study of thermodynamics, equilibrium isotherms, and biosorption parameters for the metal. Environmental Monitoring and Assessment 189:314.
  • Dixit S, Singh DP (2014). An evaluation of phycoremediation potential of cyanobacterium Nostoc muscorum: characterization of heavy metal removal efficiency. Journal of Applied Phycology 26:1331-1342.
  • Fathi AA (2002) Toxicological response of the green alga Scenedesmus bijuga to mercury and lead. Folia Microbiology 47(6): 667-671.
  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation microbiology. Microbiology 156: 609-643.
  • Jensen TE, Baxter M, Rachlin JW, Warkentine B (1982) Uptake of heavy metals by Plectonema boryanum (cyanophyceae) into cellular components, especially polyphosphate bodies: an X-ray energy dispersive study. Environmental Pollution 27(2): 119-127.
  • Kaushik BD (2014) Developments in cyanobacterial biofertilizer. Proceedings of the Indian National Science Academy 80:379-388.
  • Keasling JD (1997) Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate. Annals of the New York Academy of Sciences 829:242-249.
  • Komárek M, Chrastný V, Mihaljevič M (2008) Lead isotopes in environmental sciences: a review. Environment International (4):562-577.
  • Liu X, Herbert SJ, Hashemi AM, Zhang X, Ding G (2006) Effects of agricultural management on soil organic matter and carbon transformation - a review. Plant, Soil and Environment 52(12):531-543.
  • Liu XM, Song QJ, Tang Y, Li WL, Xu JM, Wu JJ, Wang F, Brookes PC (2018) Human health risk assessment of heavy metals in soil-vegetable system: a multi-medium analysis. Science of the Total Environment 463/464(1):530-540.
  • Lowry OH, Roserbough NJ, Farr AL, Randall RJ (1951) The folin by oliver. Journal of Biological Chemistry 193:265-275.
  • Mackinney G (1941) Absorption of light by chlorophyll solutions. Journal of Biological Chemistry 140: 315-322.
  • Marschner H (1986) Mineral Nutrition in Higher Plants. London: Academic Press/Harcourt B & Company Publishers
  • Micheletti E, Pereira S, Mannelli F, Moradas-Ferreira P, Tamagnini P, De Philippis R (2008) Sheathless mutant of cyanobacterium Gloeothece sp. strain PCC 6909 with increased capacity to remove copper ions from aqueous solutions. Applied and Environmental Microbiology 74:2797-2804.
  • Mishra U, Dhar DW (2004) Biodiversity and Biological Degradation of Soil. Resonance 26-33.
  • Morgan RC (1967) The carotenoids of Queensland fruits. Carotenes of the watermelon (Citrullus vulgaris). Journal of Food Science 32: 275-278.
  • Nagata T, Kiyono M, Pan-Hou H (2006) Engineering expression of bacterial polyphosphate kinase in tobacco for mercury remediation. Applied Microbiology and Biotechnology 72(4):777-782.
  • Nongrum S, Syiem MB (2012) Effects of copper ion (Cu2+) on the physiological and biochemical activities of the cyanobacterium Nostoc ANTH. Environmmental Engineering Research 17(51): 563-567.
  • Nubel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied Environmental Microbiology 63:3327-3332
  • Packer L, Glazer AN (1988) Cyanobacteria. Methods in Enzymology. Academic Press, INC San Diego, California, 167
  • Prasad SM, Zeeshan M (2005) UV-B radiation and cadmium induced changes in growth, photosynthesis and antioxidant enzymes of cyanobacterium Plectonema boryanum. Biologia Plantarum 49(2): 229-236.
  • Prasanna R, Sood A, Rath SK, Singh PK (2014) Cyanobacteria as a green option for sustainable agriculture. In: Sharma NK, Rai AK, Stal LJ (eds) Cyanobacteria: an economic perspective. Wiley, London, 145-166.
  • Qaiser S, Saleemi AR, Ahmad MM (2007) Heavy metal uptake by agro based waste materials. Journal of Biotechnology 10:09-416.
  • Rangsayatorn N, Upatham ES, Kruatrachue M, Pokethitiyook P, Lanza GR (2002) Phytoremediation potential of Spirulina (Arthrospira) platensis: Biosorption and toxicity studies of cadmium. Environmental Pollution 119(1): 45-53.
  • Ripkka R, Dereulles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology 111:1-61.
  • Robinson SJ, Deroo CS, Yocum CF (1982) Photosynthetic electron transfer in preparation of the cyanobacterium Spirulina platensis. Plant Physiology 70:154-161.
  • Roe HJ (1955) The determination of sugar in blood and spinal fluid with anthrone reagent. Journal of Biological Chemistry 212(1):335-343
  • Sampaio MJAM, Rowell P, Stewart WDP (1979) Purification and some properties of glutamine synthetase from the nitrogen fixing cyanobacterium Anabaena cylindrica and Nostoc sp. Journal of General Microbiology 111:181-191.
  • Shakir E, Zahraw Z, Al-Obaidy HAMJ (2017) Environmental and health risks associated with reuse of wastewater for irrigation. Egyptian Journal of Petroleum 26(1):95-102.
  • Singh MPVV, Prasad SM, Singh M (2013). Cadmium and high irradiance induced oxidative stress defense system in cyanobacterium Nostoc muscorum. Asian Journal Experimental Biological Sciences 4 (4): 545-554.
  • Sinha S, Basant A, Malik A, Singh KP (2006) Iron-induced oxidative stress in a macrophyte: A chemometric approach. Ecotoxicology and Environmental Safety 72(2):585-595.
  • Stewart WDP, Fitzgerald GP, Burris RH (1967) In situ studies on nitrogen fixation using acetylene reduction technique. Proceedings of the National Academy of Sciences of the United States of America 58:2071-2078.
  • Surosz W, Palinska KA (2000) Ultrastructural changes induced by selected Cd and Cu concentrations in the cyanobacterium Phormidium: Interaction with salinity. Journal of Plant Physiology 157: 643-650.
  • Surosz W, Palinska KA (2004) Effect of heavy metal stress on cyanobacterium Anabaena flos-aquae. Archive of Environmental Contamination and Toxicology 48:40-48.
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution. 28:2731-2739.
  • Vaishampayan A, Sinha RP, Hader DP, Dey T, Gupta AK, Bhan U, Rao AL (2001). Cyanobacterial biofertilizers in rice agriculture. Botanical Review 67: 453-516.
  • Vermaas WFJ (2001) Photosynthesis and Respiration in Cyanobacteria. Encyclopedia of life sciences.
  • Whitton BA (2000) Soils and rice-fields. In: Whitton A, Potts M, eds. The Ecology of cyanobacteria. Dordrecht, The Netherlands: Kluwer Academic Publishers, 233-255.


This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.