Electrochemical synthesis, characterization and evaluation of antioxidant activity of Co3 O4 nanoparticles and Co3 O4/TiO2 nanocomposite
  • Article Type: Research Article
  • Eurasian Journal of Biosciences, 2020 - Volume 14 Issue 2, pp. 3595-3600
  • Published Online: 26 Sep 2020
  • Open Access Full Text (PDF)

Abstract

Cobalt oxide and Co3O4 / TiO2 hybrid nanoparticle were prepared utilizing the one step electrolytic deposition method. The new nanoparticle antioxidant has been diagnosed according to the infrared spectroscopy by the emergence of new groups in the Co3O4 / TiO2 spectrum, which indicates the formation of a new antioxidant. X-ray diffraction technology has shown the emergence of new diffraction levels in the anti-Co3O4 / TiO2 spectrum compared to the cobalt oxide diffraction spectrum. The morphology of synthesized compounds were examined by Field Emission Scanning Electron Microscopy (FESEM), pure Co3O4 which have sphere-shaped aggregations forms have 30.27 nm size, while TiO2/ Co3O4 nanocomposite shows Hexagonal sheets structure and clearly indicates that the Co3O4 is diffusion on surface of TiO2 with 33.9 nm size. The EDS of the elemental is indicating uniform formation of TiO2 / Co3O4 composite by presented of titanium, cobalt and oxygen. Antioxidant activity of pure Co3O4and Co3O4- TiO2 samples were compared using H2O2 scavenging activities. Considerable in vitro antioxidant activities in a concentration-dependent manner were recorded. Interestingly, Co3O4 / TiO2 showed more elevate scavenging in H2O2antioxidant assays in low concentrations but this activity decrease with increase the nanocomposite concentration.

References

  • Barbinta Patrascu A. & Cojocariu L. & Tugulea N. & Badea I. & Lacatusu A. & Meghea J. (2011), Optoelectron Adv. Mater, 13(9): 1153-1158.
  • Binitha N.N. & Suraja P.V. & Yaakob M.R. & Resmi P.P. & Silija J. (2010), Sol Gel Sci, Technol, 53(8): 466-482.
  • Bunghez M. E. Barbinta Patrascu N. Badea S. M. Doncea, A. Popescu, R. M. Ion, J. (2012), Optoelectron Adv. Mater, 14(11): 1016-1022.
  • Cushing B.L. & Kolesnichenko V.L. (2004), C.J. O’Connor, Chem Rev, 10(4): 3893-3899.
  • Das D. & Nath B. & Phukon P. & Dolui S. (2013), Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf B: Biointerfaces, 101, 430-433. doi: 10.1016/j.colsurfb.2012.07.002
  • Dasilva L.M. & Boodts J.F.C. & Faria L.A.D. (2001), Electrochim, Acta, 4(6): 1369-1378.
  • Debanjan M. & Pinakpani D. & Sinha Roy D. & Shauroseni P. & Chatterjee I. & Shahnaz A. & Sujata Ghosh D. (2016), Free Radicals and Antioxidants, 6(1): 26-39.
  • Diallo, A. A. Beye, T. Doyle, E. Park, M. (2015), Maaza Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: physical properties Green Chem. Lett. Rev., 8(3): 30-36.
  • Du Y. & Bai Y. & Liu Y. & Cai X. & Feng Q. & Du Y. (2016), one-pot synthesis of facets coexisting anatase nanocrystals with enhanced dye-sensitized solar cell performance, chemistry select, 9(5): 6632-6640.
  • Hadjiev V.G. & Iliev M.N. & Vergilov I.V. (1988), Phys C: Solid State Phys. 21(5): 69-80.
  • Hamedi M. H. (2003), Electrochim, Acta, 4(8): 3423-3440.
  • Jiang, S.P. Tseung, A.C.C. (1990), Electrochem, Soc, 13(7): 764-780.
  • Karthick S.N. Hemalatha K.V. & Justin Raj C. & Kim H.J. & Yi M. (2013), Nanopart Res., 15(8): 1474-1489.
  • Kelpsaite I. & Baltrusaitis J. & Valatka E. (2011), Mater, Sci, 17(6): 236-248.
  • Khan I. K. Ahmad, A.T. Khalil, J. Khan, Y.A. Khan, M.S. Saqib et al. (2015), Evaluation of antileishmanial, antibacterial and brine shrimp cytotoxic potential of crude methanolic extract of Herb Ocimum basilicum (Lamiacea) J. Tradit. Chin. Med., 35(3): 316-322.
  • Kobayashi M. & Tomita K. & Petrykin V. & Yoshimura M. & Kakihana M. (2008), Direct synthesis of brookite-type titanium oxide by hydrothermal method using water-soluble titanium complexes. J Mater Sci, 43(2): 2158-2162.
  • Kumaran A. & Karunakaran R. (2007), In vitro antioxidant activities of methanolic extract ofPhyllanthus species from India, LWT Food Science and Technology, 40(5): 322-352.
  • Nakaoka K. & Nakayama M. & Ogura K. (2002), Electrochem Soc, 14(9): 159-170.
  • Purkayastha D. & Das N. & Bhattacharjee C. (2014).Synthesis and antioxidant activity of cupric oxide nanoparticles accessed via low-temperature solid state thermal decomposition of bis(dimetylglyoximato)copper(II) complex. Mater. Lett, 123, 206-209. doi:10.1016/j.matlet.2014.02.097
  • Qiong H. & Xianming W. & Peihua M. & Xiaochuan D. & Wuha UJ. (2008), Alkali induced morphology and property improvements of tio2by hydrothermal treatment. J Wuhan Univ Tech Mater Sci Ed, 2(3): 503-506.
  • Raman S. Suresh, P.A. Savarimuthu, T. Raman, A.M. Tsatsakis, K.S. Golokhvast, et al. (2016), Synthesis of Co3O4 nanoparticles with block and sphere morphology, and investigation into the influence of morphology on biological toxicity Exp. Ther. Med., 11 (2): 553-560.
  • Saikia J. & Paul S. & Konwar B. & Samdarshi S. (2010), Ultrasonication: Enhances the antioxidant activity of metal oxide nanoparticles. Colloids Surf. B: Biointerfaces, 79(2): 521-523. doi: 10.1016/j.colsurfb.2010.04.022.
  • Svegl F. & Orel B. & Svegl I.G. & Kaucic C.V. (2000), Electrochim, Acta, 45(2): 4359-4370.
  • Tang C.W. & Wang C.B. & Chien S.H. (2008), Thermochim, Acta, 47(3): 68-78.
  • Thakkar S. & Mhatre R. & Parikh Y. (2010), Nanomed Nanotechnol. Biol. Med., 6(2): 257-262.
  • Wang K. J.-J. Xu, H.-Y. (2005), ChenA novel glucose biosensor based on the nanoscaled cobalt phthalocyanine glucose oxidase biocomposite Biosens Bioelectron, 20(7): 1388-1396.
  • Zhou L. & Xu J. & Miao H. & Wang F. & Li X. (2005), Appl, Catal, 47(3): 223-292.
  • Zhu Y. & Li H. & Koltypin A. & Gedanken J. (2002), Mater, Chem, 12(6): 729-741.

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.