Abstract

Stroke is the most common neurological disorder in the word. During ischemic stroke there is increasing of oxidative stress. Green tea (Camellia sinensis) have antioxidant and free radical scavenger effect. In vivo study using male Rattus Novergicus with 5 group, control MCAO group, EGCG 10 mg/kgBW, EGCG 20 mg/ kgBW, EGCG 30 mg/kgBW, extract green tea 30 mg/kgBW. Treatment is for 7 days before sacrifice and perform brain tissue IHC examination for HO-1, TNFR1, and RIP3. There is significant different in HO-1 expression started at 10 mg/kgBW treatment (p = 0.013). Significant different on TNFR1 started at group EGCG 20 mg/kgBW (p = 0.004), there is significant different on RIP3 started at EGCG 20 mg/kgBW group (p = 0.002). There is correlation between HO-1 and TNFR1 (r = 0.497; p = 0.000), TNFR1 and RIP3 (r = 0.551; p = 0.000) and HO-1 and RIP3 (r = - 0.433; p = 0.001). Camellia sinensis with its active compound EGCG decrease RIP3 expression through down regulation of HO-1.

References

  • Adikesavan G, Vinayagam MM, Abdulrahman LA, Chinnasamy T, (2013) Epigallocatechin-gallate (EGCG) stabilize the mitochondrial enzymes and inhibits the apoptosis in cigarette smoke-induced myocardial dysfunction in rats. Molecular biology reports 40(12): 6533-6545. https://doi.org/10.1007/s11033-013-2673-5
  • Akbar M, Misbach J, Susatia F, Rasyid A, Alfa AY, Syamsudin T, et al. (2018) Clinical features of transient ischemic attack or ischemic stroke patients at high recurrence risk in Indonesia. Neurology Asia 23(2): 107-113.
  • Arina CA, Amir D, Siregar Y, Sembiring RJ, (2018) Correlation between homocysteine and dyslipidemia in ischaemic stroke patients with and without hypertension. In: IOP Conference Series Earth and Environmental Science Vol. 130. Institute of Physics Publishing https://doi.org/10.1088/1755-1315/130/1/012005
  • Aronowski J, Zhao X, (2011) Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42(6): 1781-1786.
  • Bereczki J, Balla J, Bereczki D, (2018) Heme oxygenase-1: clinical relevance in ischemic stroke. Current pharmaceutical design 24(20): 2229-2235.
  • Chen S, Liu W, Wan J, Cheng X, Gu C, Zhou H, (2017) Preparation of Coenzyme Q10 nanostructured lipid carriers for epidermal targeting with high- pressure microfluidics technique. (May): https://doi.org/10.3109/03639045.2011.650648
  • Chen X, Wang K, (2016) The fate of medications evaluated for ischemic stroke pharmacotherapy over the period 1995-2015. Acta Pharmaceutica Sinica B 6(6): 522-530. https://doi.org/10.1016/j.apsb.2016.06.013
  • Deng C, Cao J, Han J, Li J, Li Z, Shi N, He J, (2018) Liraglutide activates the Nrf2/HO-1 antioxidant pathway and protects brain nerve cells against cerebral ischemia in diabetic rats. Computational intelligence and neuroscience.
  • Feigin VL, Krishnamurthi RV (2016) Stroke: Pathophysiology, Diagnosis, and Management. Ed. by GW Grotta, Albers, JPB Grotta, GW Albers, JP Broderick, et al. Wong. Elsevier Inc
  • Feoktistova M, Leverkus M, (2015) Programmed necrosis and necroptosis signalling. The FEBS journal 282(1): 19-31.
  • Flores-Cantú H, Góngora-Rivera F, Lavalle-González F, et al. (2016) Tumor Necrosis Factor alpha, prognosis and stroke subtype etiology. Medicina Universitaria 18(73): 194-200.
  • Gundimeda U, McNeill TH, Fan TK, Deng R, Rayudu D, Chen Z, Cadenas E, Gopalakrishna R, (2014) Green tea catechins potentiate the neuritogenic action of brain-derived neurotrophic factor: role of 67-kDa laminin receptor and hydrogen peroxide. Biochemical and biophysical research communications 445(1): 218-224.
  • Han CH, Guan ZB, Zhang PX, Fang HL, Li L, Zhang HM, Zhou FJ, Mao YF, Liu WW, (2018) Oxidative stress induced necroptosis activation is involved in the pathogenesis of hyperoxic acute lung injury. Biochemical and biophysical research communications 495(3): 2178-2183. https://doi.org/10.1016/j.bbrc.2017.12.100
  • Hang H, Ofengeim D, Shi Y, Zhang F, Hwang J, Chen J, Zukin RS, (2016) Molecular and Cellular Mechanisms of Ischemia-Induced Neuronal Death. Ed. by JC Grotta, GW Albers, JP Broderick, SE Kasner, et al. 6 edition. China: Elsevier Inc
  • Howard G, Howard VJ (2016) Stroke: Pathophysiology, diagnosis, and management. Ed. by IJC Grotta, GW Albers, JP Broderick, et al. China: Elsevier Inc
  • Jafarzadeh M, Mousavizadeh K, Joghataei MT, Hashemi Bahremani M, Safa M, Asghari SM (2018).Fibroblast Growth Factor Antagonist Peptide Inhibits Breast Cancer in BALB/c Mice , 13(1), 348-354.
  • Jeon S-B, Koh Y, Choi HA, Lee K (2014) Critical care for patients with massive ischemic stroke. Journal of stroke 16(3): 146. https://doi.org/10.5853/jos.2014.16.3.146
  • Jiang J, Mo Z-C, Yin K, Zhao G-J, Lv Y-C, et al. (2012) Epigallocatechin-3-gallate prevents TNF-α-induced NF-κB activation thereby upregulating ABCA1 via the Nrf2/Keap1 pathway in macrophage foam cells. International journal of molecular medicine 29(5): 946-956.
  • Kadenbach B, Ramzan R, Vogt S (2009) Degenerative diseases, oxidative stress and cytochrome c oxidase function. Trends in molecular medicine 15(4): 139-147. https://doi.org/10.1016/j.molmed.2009.02.004
  • Kaiser S, Frase S, Selzner L, Lieberum J-L, Wollborn J, et al. (2019) Neuroprotection after Hemorrhagic Stroke Depends on Cerebral Heme Oxygenase-1. Antioxidants 8(10): 496.
  • Kim E, Han SY, Hwang K, Kim D, Kim E-M, et al. (2019) Antioxidant and Cytoprotective Effects of (−)-Epigallocatechin-3-(3 ″-O-methyl) Gallate. International journal of molecular sciences 20(16): 3993.
  • Kim H-S, Montana V, Jang H-J, Parpura V, Kim J, (2013) Epigallocatechin Gallate (EGCG) Stimulates Autophagy in Vascular Endothelial Cells a potential role for reducing lipid accumulation. Journal of Biological Chemistry 288(31): 22693-22705.
  • Kim H-S, Quon MJ, Kim J (2014) New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox biology 2: 187-195.
  • Kim S-J, Eum H-A, Billiar TR, Lee S-M (2013) Role of heme oxygenase 1 in TNF/TNF receptor-mediated apoptosis after hepatic ischemia/reperfusion in rats. Shock 39(4): 380-388.
  • Kim Y, Lee J (2016) Effect of (-)-epigallocatechin-3-gallate on anti-inflammatory response via heme oxygenase-1 induction during adipocyte-macrophage interactions. Food science and biotechnology 25(6): 1767-1773. https://doi.org/10.1074/jbc.M113.477505
  • Kishimoto Y, Kondo K, Momiyama Y (2019) The Protective Role of Heme Oxygenase-1 in Atherosclerotic Diseases. International journal of molecular sciences 20(15): 3628.
  • Leu J-G, Lin C-Y, Jian J-H, Shih C-Y, Liang Y-J (2013) Epigallocatechin-3-gallate combined with alpha lipoic acid attenuates high glucose-induced receptor for advanced glycation end products (RAGE) expression in human embryonic kidney cells. Anais da Academia Brasileira de Ciências 85(2): 745-752.
  • Lewén A, Fujimura M, Sugawara T, Matz P, Copin J-C, Chan PH (2001) Oxidative stress-dependent release of mitochondrial cytochrome c after traumatic brain injury. Journal of Cerebral Blood Flow & Metabolism 21(8): 914-920. https://doi.org/10.1097/00004647-200108000-00003
  • Li X, Song G, Jin Y, Liu H, Li C, Han C, Ren S (2014) Higher level of heme oxygenase-1 in patients with stroke than TIA. Journal of thoracic disease 6(6): 772.
  • Lim SH, Kim HS, Kim YK, Kim T-M, et al. (2010) The functional effect of epigallocatechin gallate on ischemic stroke in rats. Acta Neurobiol Exp (Wars) 70(1): 40-46.
  • Linkermann A, Bräsen JH, Darding M, Jin MK, et al. (2013) Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proceedings of the National Academy of Sciences 110(29): 12024-12029.
  • Liu P-L, Liu J-T, Kuo H-F, Chong I-W, Hsieh C-C, (2014) Epigallocatechin gallate attenuates proliferation and oxidative stress in human vascular smooth muscle cells induced by interleukin-1 via heme oxygenase-1. Mediators of inflammation 2014.
  • Lv C, Maharjan S, Wang Q, Sun Y, Han X, et al. (2017) α-Lipoic acid promotes neurological recovery after ischemic stroke by activating the Nrf2/HO-1 pathway to attenuate oxidative damage. Cellular Physiology and Biochemistry 43(3): 1273-1287.
  • Marbun JT, Seniman, Andayani U, (2018) Classification of stroke disease using convolutional neural network. Vol. 978. Department Information Technology, Universitas Sumatera Utara, Indonesia: Institute of Physics Publishing https://doi.org/10.1088/1742-6596/978/1/012092
  • Moriwaki K, Chan FK-M (2013) RIP3: a molecular switch for necrosis and inflammation. Genes & development 27(15): 1640-1649.
  • Muharram FR, Al Fauzi A, Rahardjo P, Lestari P (2019) Profile of Clinical and Radiological Factors of Intracerebral Hemorrhage Stroke Patients in Dr. Soetomo Hospital. JUXTA: Jurnal Ilmiah Mahasiswa Kedokteran Universitas Airlangga 10(1): 15-19.
  • Murray PS, Holmes PV (2011) An overview of brain-derived neurotrophic factor and implications for excitotoxic vulnerability in the hippocampus. International journal of peptides.
  • Newton K, Dugger DL, Maltzman A, Greve JM, et al. (2016) RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death & Differentiation 23(9): 1565-1576. https://doi.org/10.1038/cdd.2016.46
  • Newton Kim, Dugger DL, Wickliffe KE, Kapoor N, et al. (2014) Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343(6177): 1357-1360.
  • Nogusa S, Thapa RJ, Dillon CP, Liedmann S, et al. (2016) RIPK3 activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis to protect against influenza A virus. Cell host & microbe 20(1): 13-24.
  • Olmos G, Lladó J, (2014) Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators of inflammation.
  • Ortiz-López L, Márquez-Valadez B, Gómez-Sánchez A, et al. (2016) Green tea compound epigallo-catechin-3-gallate (EGCG) increases neuronal survival in adult hippocampal neurogenesis in vivo and in vitro. Neuroscience 322: 208-220. https://doi.org/10.1016/j.neuroscience.2016.02.040
  • Pan W, Kastin AJ (2007) Tumor necrosis factor and stroke: role of the blood-brain barrier. Progress in neurobiology 83(6): 363-374. https://doi.org/10.1016/j.pneurobio.2007.07.008
  • Panahian N, Yoshiura M, Maines MD (1999) Overexpression of heme oxygenase‐1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. Journal of neurochemistry 72(3): 1187-1203.
  • Pobezinskaya YL, Liu Z, (2012) The role of TRADD in death receptor signaling. Cell Cycle 11(5): 871-876.
  • Puspitasari V, Wahid S, Aliah A, Suhadi B, Kaelan C, et al. (2015) Serum vascular endothelial growth factor as a predictor of clinical outcomes in anterior circulation ischemic stroke. Medical Journal of Indonesia 24(2): 109-114. https://doi.org/10.13181/mji.v24i2.1196
  • Rachmawati M, Sugianto P, Wardhani RIL (2019) LDL Level in Ischaemic Stroke Patients at Dr. Soetomo General Hospital Surabaya. Biomolecular and Health Science Journal 2(1): 41-43.
  • Rodrigo R, Fernández-Gajardo R, Gutiérrez R, Manuel Matamala J, et al. (2013) Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 12(5): 698-714.
  • Sayal P, Devi P, Singh K, (2016) Bacterial Colonization and Biofilm Formation among Diabetic Patients: A Therapeutic Challenge. Int. J. Curr. Microbiol. App. Sci 5(9): 174-181.
  • Singh NA, Mandal AKA, Khan ZA (2015) Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutrition journal 15(1): 60.
  • Srinivasan S, Avadhani NG, (2012) Cytochrome c oxidase dysfunction in oxidative stress. Free Radical Biology and Medicine 53(6): 1252-1263.
  • Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death & Differentiation 10(1): 45-65. https://doi.org/10.1038/sj.cdd.4401189
  • Wang Z-M, Gao W, Wang H, Zhao D, Nie Z-L, et al. (2014) Green tea polyphenol epigallocatechin-3-gallate inhibits TNF-a-induced production of monocyte chemoattractant protein-1 in human umbilical vein endothelial cells. Cellular Physiology and Biochemistry 33(5): 1349-1358.
  • Wegner KW, Saleh D, Degterev A (2017) Complex pathologic roles of RIPK1 and RIPK3: moving beyond necroptosis. Trends in pharmacological sciences 38(3): 202-225.
  • Willey (2012) Acute Ischemic Stroke The Neuro ICU Book. Ed. by Lee, I. K. New Yor: Mc Graw Hill Medical.
  • Wu K-J, Hsieh M-T, Wu C-R, Wood WG, Chen Y-F (2012) Green tea extract ameliorates learning and memory deficits in ischemic rats via its active component polyphenol epigallocatechin-3-gallate by modulation of oxidative stress and neuroinflammation. Evidence-Based Complementary and Alternative Medicine.
  • Yang WS, Moon SY, Lee MJ, Park S-K (2016) Epigallocatechin-3-gallate attenuates the effects of TNF-α in vascular endothelial cells by causing ectodomain shedding of TNF receptor 1. Cellular Physiology and Biochemistry 38(5): 1963-1974. https://doi.org/10.1159/000445557
  • Yue HJ, Mills PJ, Ancoli-Israel S, Loredo JS, Ziegler MG, Dimsdale JE (2009) The roles of TNF-α and the soluble TNF receptor I on sleep architecture in OSA. Sleep and Breathing 13(3): 263-269.
  • Zhang J-C, Xu H, Yuan Y, Chen J-Y, Zhang Y-J, Lin Y, Yuan S-Y (2017) Delayed treatment with green tea polyphenol EGCG promotes neurogenesis after ischemic stroke in adult mice. Molecular neurobiology 54(5): 3652-3664.
  • Zhu Y, Cui H, Xia Y, Gan H (2016) RIPK3-mediated necroptosis and apoptosis contributes to renal tubular cell progressive loss and chronic kidney disease progression in rats. PloS one 11(6): e0156729. https://doi.org/10.1371/journal.pone.0156729

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.