Advantages and disadvantages of experimental glaucoma models

Abstract

Glaucoma is a disease accompanied by a progressive degenerative lesion of the retinal ganglion cells and the optic nerve, being one of the leading causes of blindness all over the world. The search for the new drugs for the treatment of glaucoma, aimed directly at reducing intraocular pressure and neuroprotection, and in some cases neuroregeneration, is impossible without the creation of appropriate experimental models. The current variety of models does not always provide a sufficient level of functional changes or is accompanied by a number of disadvantages that impede further research. There is a wide variety of glaucoma models. This article discusses the main ones, as well as describes the advantages and disadvantages of glaucoma models performed in small laboratory animals. Hypertensive and normotensive models of glaucoma are described, which correlates with human pathogenesis. This review forms a representation and describes most models of glaucoma in rodents. The search for models of certain forms of glaucoma remains as an indisputable fact. Based on testable hypothesis and experimental validity this data should be interpreted in the context of the experiment. Despite modern achievements, the improvement of experimental techniques and the search for new models continues till the present day.

References

  • Agarwal, R., Agarwal, P., 2017. Rodent models of glaucoma and their applicability for drug discovery. Expert opinion on drug discovery, 12(3): 261–270.
  • Avdeeva, N.V., Sidorova, S.A., Gudyrev, O.S., Osipova, O.A., Golubev, I.V., 2019. Mechanism of neuroprotective effect of mGluR4 agonists. Research Results in Pharmacology, 5 (2): 43-47.
  • Biswas, S., Wan, K.H., 2018. Review of rodent hypertensive glaucoma models. Actaophthalmologica, 97(3): e331-e340.
  • Calkins, D.J., Lambert, W.S., Formichella, C.R., McLaughlin, W.M., Sappington, R.M., 2018. The Microbead Occlusion Model of Ocular Hypertension in Mice. Methods in molecular biology, 1695:23-39.
  • Daimon, T., Kazama, M., Miyajima, Y., Nakano, M., 1997. Immunocytochemical localization of thrombomodulin in the aqueous humor passage of the rat eye. Histochemistry and Cell Biology, 108(2):121–131.
  • De Moraes, C.G., Liebmann, J.M., Levin, L.A., 2017. Detection and measurement of clinically meaningful visual field progression in clinical trials for glaucoma. Progress in retinal and eye research, 56:107-147.
  • Dey, A., Manthey, A.L., Chiu, K., Do, C.W., 2018. Methods to induce chronic ocular hypertension: reliable rodent models as a platform for cell transplantation and other therapies. Cell Trans-plant, 27(2): 213–229.
  • Fortune, B., Choe, T.E., Reynaud, J., Hardin, C., Cull, G.A., Burgoyne, C.F., Wang, L., 2011. Deformation of the rodent optic nerve head and peripapillary structures during acute intraocular pressure elevation. Investigative ophthalmology and visual science, 52(9): 6651–6661.
  • Ishikawa, M., Yoshitomi, T., Zorumski, C.F., Izumi, Y., 2015. Experimentally Induced Mammalian Models of Glaucoma. BioMed research international, 2015:281214.
  • Johnson, T.V., Tomarev, S.I., 2010. Rodent models of glaucoma. Brain Res Bull, 81(2-3):349-358.
  • Kim, G., Gan’shina, T., Kurza, E., Kurdyumov, I., Maslennikov, D., Mirzoian, R., 2019. Newcerebrovascularagentwithhypotensiveactivity. ResearchResultsinPharmacology, 5 (2): 71-77.
  • Kwong, J.M., Vo, N., Quan, A., Nam, M., Kyung, H., Yu, F., Piri, N., Caprioli, J., 2013. The dark phase intraocular pressure elevation and retinal ganglion cell degeneration in a rat model of experimental glaucoma. Experimental Eye Research, 112: 21–28.
  • Lambuk, L., Jafri, A.J.A., Iezhitsa, I., Agarwal, R., Bakar, N.S., Agarwal, P., Abdullah, A., Ismail, N.M., 2019. Dose-dependent effects of NMDA on retinal and optic nerve morphology in rats. International journal of ophthalmology, 12(5):746–753.
  • Levkova, E.A., Pazhinsky, A.L., Lugovskoy, S.S., Peresypkina, A.A., Bashuk, V.V., Pazhinsky, L.V., Martynov, M.A., Beskhmelnitsyna, E.A., 2019. Correction of retinal ischemic injuries by using non-selective imidazoline receptor agonists in the experiment. Research Results in Pharmacology, 5(4): 7–17.
  • Levkovitch-Verbin, H., Harris-Cerruti, C., Groner, Y., Wheeler, L.A., Schwartz, M., Yoles, E., 2000. RGC death in mice after optic nerve crush injury: oxidative stress and neuroprotection. Investigative ophthalmology & visual science, 41(13): 4169–4174.
  • Levkovitch-Verbin, H., Quigley, H.A., Martin, K.R., Valenta, D., Baumrind, L.A., Pease, M.E., 2002. Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. Investigative ophthalmology & visual science, 43(2): 402–410.
  • Liu, H.H., Bui, B.V., Nguyen, C.T., Kezic, J.M., Vingrys, A.J., He, Z., 2015. Chronic ocular hypertension induced by circumlimbal suture in rats. Investigative ophthalmology & visual science, 56(5):2811–2820.
  • Marcus., A.J., Iezhitsa, I., Agarwal, R., Vassiliev, P., Spasov, A., Zhukovskaya, O., Anisimova, V., Ismail, N.M., Eur, J., 2019. Intraocular pressure-lowering effects of imidazo[1,2-a]- and pyrimido[1,2-a]benzimidazole compounds in rats with dexamethasone-induced ocular hypertension. European journal of pharmacology, 850:75-87.
  • Martynov, M.A., Martynova, O.V., Shkileva, I.Yu.,Tokarev, I.A., Dovgan, A.N., 2016. Thymosinβ4 as basis for creationof a reparation preparation of new generation. Research Result: Pharmacology and Clinical Pharmacology, 2(3): 101-106.
  • Martynova, O.V., 2017. Tadalafil as an agent of pharmacological preconditioning in ischemic - reperfusion brain injury. Research Result: Pharmacology and Clinical Pharmacology, 3(3): 20-36.
  • Mayordomo-Febrer, A., Lopez-Murcia, M., Morales-Tatay, J.M., Monleon-Salvado, D., Pinazo-Duran, M.D., 2015. Metabolomics of the aqueous humor in the rat glaucoma model induced by a series of intracamerular sodium hyaluronate injection. Experimental Eye Research, 131: 84–92.
  • McKinnon, S.J., Schlamp, C.L., Nickells, R.W., 2009. Mouse models of retinal ganglion cell death and glaucoma. Experimental Eye Research, 88(4): 816–824.
  • Morgan, J.E., Tribble, J.R., 2015. Microbead models in glaucoma. Experimental Eye Research, 141: 9–14.
  • Morrison, J.C., Moore, C.G., Deppmeier, L.M., Gold, B.G., Meshul, C.K., Johnson, E.C., 1997. A rat model of chronic pressure-induced optic nerve damage. Experimental Eye Research, 64(1):85-96.
  • Peresypkin, A., Pazhinsky, A., Danilenko, L., Lugovskoy, S., Pokrovskii, M., Beskhmelnitsyna, E., Solovev, N., Pobeda, A., Korokin,M., Levkova, E., Gubareva, V., Korokina, L., Martynova, O., Soldatov, V., Pokrovskii,V., 2020.Retinoprotective Effect of 2-Ethyl-3-hydroxy-6-methylpyridine Nicotinate. Biology (Basel), 9(3): 45.
  • Peresypkina, A.A., Gubareva, V.O., Levkova, E.A., Shabelnikova, A.S., Pokrovskii, M.V., 2018. Pharmacological correction of retinal ischemia/reperfusion by minoxidil. Srpskiarhivzacelokupnolekarstvo, 146(9-10): 530-533.
  • Ruiz-Ederra, J., Verkman, A.S., 2006. Mouse model of sustained elevation in intraocular pressure produced by episcleral vein occlusion. Experimental Eye Research, 82(5):879–884.
  • Shabelnikova, A., Peresypkina, A., Gubareva, V., Levkova, E., Dolzhikov, A., Nikolaev, S., Stepchenko, A., 2016. Pharmacological preconditioning by recombinant erythropoietin as the possibility of increasing the stability of tissue of the retina to reperfusion ischemia in experiment. Research results in pharmacology, 2(1): 25-29.
  • Shabelnikova, A.S., Lutsenko, V.D., Pokrovskii, M.V., Peresipkina, A.A., Korokin, M.V., Gudyrev, O.S., Pokrovskaia, T.G., Beskhmelnitsyna, E.A., Hoshenko, Y.A., 2015. Protective Effects of Recombinant Erythropoietin in Ischemia of the Retina: The Role of Mechanisms of Preconditioning. Research Journal of Medical Sciences, 9(4): 200-203.
  • Shabelnikova, A.S., Peresypkina, A.A., Pokrovskiy, M.V., Kashuba, A.S., Netrebenko, A.S., 2014. Analysis of the protective properties of erythropoetin and nicorandilon the basis of the model of the retina ischemia/reperfusion. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(6): 1335-1339.
  • Skachilova, S.Y., Ragulina, V.A., Kostina, D.A., Burda, Y.E., 2017.Test system for evaluation of the influence of the biological activity of substances on the signal system of NF-κB: focus on the derivatives of 3-hydroxypyridine. Research result: pharmacology and clinical pharmacology, 3(2): 50-56.
  • Yang, Q., Cho, K.S., Chen, H., Yu, D., Wang, W.H., Luo, G., Pang, I.H., Guo, W., Chen, D.F., 2012. Microbead-induced ocular hypertensive mouse model for screening and testing of aqueous production suppressants for glaucoma. Investigative ophthalmology & visual science, 53(7): 3733–3741.
  • Yu, S., Tanabe, T., Yoshimura, N., 2006. A rat model of glaucoma induced by episcleral vein ligation. Experimental Eye Research, 83(4):758–770.
  • Yun, H., Lathrop, K.L., Yang, E.,Sun, M., Kagemann, L., Fu, V., Stolz, D.B., Schuman, J.S., Du, Y., 2014. A laserinduced mouse model with long-term intraocular pressure elevation. PLoS One, 9(9): e107446.
  • Zhu, Y., Zhang, L., Schmidt, J.F., Gidday, J.M., 2012. Glaucoma-induced degeneration of retinal ganglion cells prevented by hypoxic preconditioning: a model of glaucoma tolerance. Molecular medicine, 18(1):697-706.

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.